Towards a Hands-Free Query Optimizer through Deep Reinforcement Learning

Ryan Marcus*, Olga Papaemmanouil Brandeis University

@RyanMarcus ryan@cs.brandeis.edu

These slides: http://rm.cab/cidr19

Towards a Hands-Free Query Optimizer through Deep Reinforcement Learning

(putting Eugene Wu out of work)

Ryan Marcus*, Olga Papaemmanouil Brandeis University

@RyanMarcus ryan@cs.brandeis.edu

These slides: http://rm.cab/cidr19

Query Optimizers

- Extremely complex to develop
 - PostgreSQL: 40k LOC (12/27/2018)
 - SQL Server & Vertica: much higher
- Requires DBA tuning
 - Thousands of knobs (probably ~50 require changes)
- Optimizer = expert system. Can we learn it instead?

Learning Expert Systems

- Past 5 years: huge explosion in deep reinforcement learning
- AlphaGo, PPO, DQN, etc.
- Outperforming expert systems

- Agent observes a state
 - Info about the world
 - Set of possible actions
- Agent selects an action, gets:
 - A reward
 - New state
- Goal: maximize reward over time

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

 Each state is a partial join order

- Each action fuses two partial orderings
- Reward is the query latency

State

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions:

(A, B), (B, A), (A, C), (C, A), (A, D), (D, A), (B, C), (C, B), (B, D), (D, B), (C, D), (D, C)

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions:

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions: ([BA], C), (C, [BA]), ([BA], D),

(D, [BA]), (C, D), (D, C)

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions: ([BA], C), (C, [BA]), **([BA], D)**, (D, [BA]), (C, D), (D, C)

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions: ([[BA]D], C), (C, [[BA]D])

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions: ([[BA]D], C), (C, [[BA]D])

State

- Each state is a partial join order
- Each action fuses two partial orderings
- Reward is the query latency

Possible actions:

The Dream

- We've described QO (partially) as an RL problem. So what?
- Replace optimizers with off-the-shelf deep reinforcement learning algorithm
- Totally "hands-free" no configuration required.
 - Automatically tune to each DBMS
 - Column store, row store, XYZ-store...
 - Automatically adapt to shifts in workload

The Reality

Rapid, multi-faceted progress!

The Reality

- ReJOIN: deep reinforcement learning for join order enumeration
 - http://rm.cab/rejoin
- Promising results
 - Better join orderings than Postgres
- Problems
 - Only does join orderings
 - Uses optimizer cost model as a reward

ReJOIN

- Problem 1: ReJOIN only does join order enumeration.
- Other optimizer decisions
 - -Join operator selection?
 - -Index selection?
 - -Aggregate operator selection?
 - -Early vs. late materialization?

- Who cares? Join order is the hard part.
 - Yes and no...

- Who cares? Join order is the hard part.
 - Yes and no...

- Who cares? Join order is the hard part.
 - Yes and no...

- Who cares? Join order is the hard part.
 - Yes and no...

- Who cares? Join order is the hard part.
 - Yes and no...

Cost Models

- Problem 2: ReJOIN depends on a cost model.
 - Cost models are complex, require development effort, tuning, etc.

Why won't ReJOIN work?

- Why can't we just use the same approach as before?
 - Expand the action set
 - Plug in query latency as the reward signal
- In short, because the query latency doesn't behave well as a reward signal.
- Bad plans are really bad
- Rewards are sparse

Bad plans are bad

What we want

Reading the score takes constant time

What we've got

"Reading" the score takes a very long time!

- Good vs. bad join orders: seconds vs. days
- Sometimes even the best join order still takes minutes or hours
- ... and we need 10k to converge!

Sparse Rewards

There are no intermediate rewards.

Reward: 3

Reward: 2

Reward: 5

Potential Solutions

- We describe three possible architectures:
 - Learning from demonstration
 - Cost-model bootstrapping
 - Incremental learning

- "Cold start" learning occurs rarely in nature
 - Initial learning happens via imitation
- Can we learn from demonstration?
 - Traditional query optimizer = adult
 - DRL agent = child

- Let Q*(s) be the best possible latency we could achieve from state (partial plan) s
 - A lot like an optimizer cost model
- Idea: use a neural network, Q(s), to estimate Q*(s)
 - Initially, train this neural network through observation of the expert system
 - Then, refine it.

$$Q((S_a)) = 25$$

$$Q((S_e)) = 22$$

$$Q((S_i)) = 85$$

$$Q((S_n)) = 107$$

$$Q((S_b)) = 25$$

$$Q((S_f)) = 22$$

$$Q((S_i)) = 85$$

$$Q((S_p)) = 107$$

$$Q((S_c)) = 25$$

$$Q((S_g)) = 22$$

$$Q((S_k)) = 85$$

$$Q((S_q)) = 107$$

$$Q(S_d) = 25$$

$$Q((S_h)) = 22$$

$$Q((S_m)) = 85$$

$$Q((s_r)) = 107$$

Latency: 25ms

Q2:

Latency: 22ms

Q3:

Latency: 85ms

Q4:

Latency: 107ms

Training Data

$$Q(S_2) = 205$$

$$Q((S_3)) = 87$$

$$Q((S_4)) = 43$$

$$Q((S_5)) = 36$$

$$Q((S_6)) = 42$$

$$Q((S_7)) = 88$$

$$Q((s_8)) = 39$$

$$Q((S_9)) = 60$$

$$Q((s_8)) = 39$$

$$Q((S_9)) = 60$$

P1

Latency: 40ms

Predictions:

$$Q((s_1)) = 25$$

$$Q((S_4)) = 43$$

$$Q((S_5)) = 36$$

$$Q((s_8)) = 39$$

P1

Latency: 40ms

Predictions:

$$Q((s_1)) = 25$$

$$Q((S_4)) = 43$$

$$Q((S_5)) = 36$$

$$Q((s_8)) = 39$$

Update the network with:

$$Q((S_1)) = 40$$

$$Q((S_4)) = 40$$

$$Q((S_5)) = 40$$

$$Q((S_8)) = 40$$

P1

Latency: 40ms

$$\mathbf{Q}(S_5) = 36$$

$$Q((S_6)) = 42$$

$$Q((S_7)) = 88$$

Use the state with the lowest predicted latency Result? Imitate & improve on the expert

$$Q(S_5) = 36 \rightarrow 0.441$$

$$Q((S_6)) = 42 \rightarrow 0.378$$

$$Q(S_7) = 88 \rightarrow 0.181$$

Normalize the output, sample from the distribution Result? Explore & exploit

$$Q(S_5) = 36 \pm 20$$

$$Q((S_6)) = 42 \pm 28$$

$$Q((S_7)) = 88 \pm 5$$

Use the variance of the predicated latency to decide when to "ask the expert" again

Result? "Active learning"

Desired behavior of a "learn from demonstration" system

- Take advantage of pre-existing optimizers
 - Bootstrap & surpass, hopefully!
- Drastically reduce convergence time, while:
 - Going beyond join ordering
 - Using query latency, not cost model

- Challenges & Opportunities
 - Trading off exploitation and exploration
 - Balancing expert / exploratory data
 - When do we "go back to the expert?"
 - Managing uncertainty
 - What to do when variance is high?
 - How good does the expert need to be?
 - Could we use something simple?

Potential Solutions

- We describe three possible architectures:
 - Learning from demonstration
 - Cost-model bootstrapping
 - Incremental learning

Cost-model Bootstrapping

Like practicing free throws before playing basketball

Incremental Learning

Instead of learning calculus from nothing, start with arithmetic, then geometry, then algebra, etc.

Conclusions

- Vast research space for DRL applications to query optimization
- Huge potential
 - For increasing query performance
 - For decreasing complexity
- These slides: http://rm.cab/cidr19
- Twitter: @RyanMarcus

