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Query Optimizers
● Extremely complex to develop

– PostgreSQL: 40k LOC (12/27/2018)
– SQL Server & Vertica: much higher

● Requires DBA tuning
– Thousands of knobs (probably ~50 require 

changes)

● Optimizer = expert system. Can we 
learn it instead?



  

Learning Expert Systems
● Past 5 years: huge explosion in 

deep reinforcement learning
● AlphaGo, PPO, DQN, etc. 
● Outperforming expert systems



  

Reinforcement Learning
● Agent observes a state

– Info about the world
– Set of possible actions

● Agent selects an action, gets:
– A reward
– New state

● Goal: maximize reward over 
time
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Reinforcement Learning
● Each state is a 

partial join order
● Each action fuses 

two partial 
orderings

● Reward is the 
query latency

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;
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The Dream
● We’ve described QO (partially) as an RL 

problem. So what?
● Replace optimizers with off-the-shelf deep 

reinforcement learning algorithm
● Totally “hands-free” – no configuration 

required.
– Automatically tune to each DBMS

● Column store, row store, XYZ-store…

– Automatically adapt to shifts in workload



  

The Reality
● Rapid, multi-faceted progress!

Feb/Mar
2018

SIGMOD ‘18
June

Aug
2018

Sept
2018

CIDR ‘19
January

arXiv preprints

Workshop / conference

Work in progress



  

The Reality
● ReJOIN: deep reinforcement learning for 

join order enumeration
– http://rm.cab/rejoin 

● Promising results
– Better join orderings than Postgres

● Problems
– Only does join orderings
– Uses optimizer cost model as a reward



  

ReJOIN



  

Beyond Join Orders
● Problem 1: ReJOIN only does join 

order enumeration.
● Other optimizer decisions

– Join operator selection? 
– Index selection? 
– Aggregate operator selection? 
– Early vs. late materialization?



  

Beyond Join Orders
● Who cares? Join order is the hard part.

– Yes and no...
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Beyond Join Orders
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Cost Models
● Problem 2: ReJOIN depends on a 

cost model.
– Cost models are complex, 

require development effort, 
tuning, etc. 



  

Why won’t ReJOIN work?
● Why can’t we just use the same approach as 

before?
– Expand the action set
– Plug in query latency as the reward signal

● In short, because the query latency doesn’t 
behave well as a reward signal.

● Bad plans are really bad
● Rewards are sparse



  

Bad plans are bad
What we want What we’ve got

B A

C
D100k rows

200 rows

20 rows

Reading the score takes 
constant time

(a really bad 
join order)

“Reading” the score 
takes a very long time!

● Good vs. bad join orders: seconds vs. days
● Sometimes even the best join order still takes minutes or hours
● … and we need 10k to converge!



  

Sparse Rewards
● There are no intermediate rewards.

Reward: 0 Reward: 0 Reward: 10

After this state, we 

can finally execute 

the plan and get a 

reward.

Reward: 2 Reward: 3 Reward: 5

Smooth, dense 

reward across the 

entire episode

What we’ve got

What we want



  

Potential Solutions
● We describe three possible 

architectures:
– Learning from demonstration
– Cost-model bootstrapping
– Incremental learning



  

Learn from Demonstration
● “Cold start” learning occurs rarely in 

nature
– Initial learning happens via imitation

● Can we learn from demonstration?
– Traditional query optimizer = adult
– DRL agent = child



  

Learn from Demonstration
● Let Q*(s) be the best possible latency we 

could achieve from state (partial plan) s
– A lot like an optimizer cost model

● Idea: use a neural network, Q(s), to 
estimate Q*(s)
– Initially, train this neural network through 

observation of the expert system
– Then, refine it.



  

Learn from Demonstration
Q1 Q2 Q3 Q4

Traditional Query
Optimizer
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Learn from Demonstration
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Use the state with the lowest predicted latency
Result? Imitate & improve on the expert



  

Learn from Demonstration
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Learn from Demonstration
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Use the variance of the predicated latency to decide
when to “ask the expert” again

 
Result? “Active learning”



  

Learn from Demonstration

From Demonstration

Desired behavior of a “learn from demonstration” system



  

Learn from Demonstration
● Take advantage of pre-existing 

optimizers
– Bootstrap & surpass, hopefully!

● Drastically reduce convergence 
time, while:
– Going beyond join ordering
– Using query latency, not cost model



  

Learn from Demonstration
● Challenges & Opportunities

– Trading off exploitation and exploration
– Balancing expert / exploratory data

● When do we “go back to the expert?”

– Managing uncertainty
● What to do when variance is high?

– How good does the expert need to be?
● Could we use something simple? 



  

Potential Solutions
● We describe three possible 

architectures:
– Learning from demonstration
– Cost-model bootstrapping
– Incremental learning



  

Cost-model Bootstrapping

Like practicing free throws before playing basketball



  

Incremental Learning

Instead of learning calculus from nothing, start with arithmetic, 
then geometry, then algebra, etc.



  

Conclusions
● Vast research space for DRL applications 

to query optimization
● Huge potential 

– For increasing query performance
– For decreasing complexity

● These slides: http://rm.cab/cidr19
● Twitter: @RyanMarcus

http://rm.cab/cidr19
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