

Towards a Hands-Free Query Optimizer
through Deep Reinforcement Learning

Ryan Marcus*, Olga Papaemmanouil
Brandeis University

@RyanMarcus
ryan@cs.brandeis.edu

These slides: http://rm.cab/cidr19

mailto:ryan@cs.brandeis.edu

Towards a Hands-Free Query Optimizer
through Deep Reinforcement Learning

(putting Eugene Wu out of work)

Ryan Marcus*, Olga Papaemmanouil
Brandeis University

@RyanMarcus
ryan@cs.brandeis.edu

These slides: http://rm.cab/cidr19

mailto:ryan@cs.brandeis.edu

Query Optimizers
● Extremely complex to develop

– PostgreSQL: 40k LOC (12/27/2018)
– SQL Server & Vertica: much higher

● Requires DBA tuning
– Thousands of knobs (probably ~50 require

changes)

● Optimizer = expert system. Can we
learn it instead?

Learning Expert Systems
● Past 5 years: huge explosion in

deep reinforcement learning
● AlphaGo, PPO, DQN, etc.
● Outperforming expert systems

Reinforcement Learning
● Agent observes a state

– Info about the world
– Set of possible actions

● Agent selects an action, gets:
– A reward
– New state

● Goal: maximize reward over
time

E
nviron m

ent

A
gent

action

state

reward

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

A B C D

State

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

A B C D

State

Possible actions:
(A, B), (B, A), (A, C), (C, A), (A, D),
(D, A), (B, C), (C, B), (B, D), (D, B),
(C, D), (D, C)

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

A B C D

State

Possible actions:
(A, B), (B, A), (A, C), (C, A), (A, D),
(D, A), (B, C), (C, B), (B, D), (D, B),
(C, D), (D, C)

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

B A C D

State

Possible actions:
([BA], C), (C, [BA]), ([BA], D),
(D, [BA]), (C, D), (D, C)

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

B A C D

State

Possible actions:
([BA], C), (C, [BA]), ([BA], D),
(D, [BA]), (C, D), (D, C)

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

B A

C
D

State

Possible actions:
([[BA]D], C), (C, [[BA]D])

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

B A

C
D

State

Possible actions:
([[BA]D], C), (C, [[BA]D])

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

Reinforcement Learning
● Each state is a

partial join order
● Each action fuses

two partial
orderings

● Reward is the
query latency

B A

C
D

State

Possible actions:

SELECT * FROM A, B, C, D WHERE A.attr1 = B.attr2 AND …;

The Dream
● We’ve described QO (partially) as an RL

problem. So what?
● Replace optimizers with off-the-shelf deep

reinforcement learning algorithm
● Totally “hands-free” – no configuration

required.
– Automatically tune to each DBMS

● Column store, row store, XYZ-store…

– Automatically adapt to shifts in workload

The Reality
● Rapid, multi-faceted progress!

Feb/Mar
2018

SIGMOD ‘18
June

Aug
2018

Sept
2018

CIDR ‘19
January

arXiv preprints

Workshop / conference

Work in progress

The Reality
● ReJOIN: deep reinforcement learning for

join order enumeration
– http://rm.cab/rejoin

● Promising results
– Better join orderings than Postgres

● Problems
– Only does join orderings
– Uses optimizer cost model as a reward

ReJOIN

Beyond Join Orders
● Problem 1: ReJOIN only does join

order enumeration.
● Other optimizer decisions

– Join operator selection?
– Index selection?
– Aggregate operator selection?
– Early vs. late materialization?

Beyond Join Orders
● Who cares? Join order is the hard part.

– Yes and no...

Beyond Join Orders
● Who cares? Join order is the hard part.

– Yes and no...

Beyond Join Orders
● Who cares? Join order is the hard part.

– Yes and no...

Beyond Join Orders
● Who cares? Join order is the hard part.

– Yes and no...

Beyond Join Orders
● Who cares? Join order is the hard part.

– Yes and no...

Cost Models
● Problem 2: ReJOIN depends on a

cost model.
– Cost models are complex,

require development effort,
tuning, etc.

Why won’t ReJOIN work?
● Why can’t we just use the same approach as

before?
– Expand the action set
– Plug in query latency as the reward signal

● In short, because the query latency doesn’t
behave well as a reward signal.

● Bad plans are really bad
● Rewards are sparse

Bad plans are bad
What we want What we’ve got

B A

C
D100k rows

200 rows

20 rows

Reading the score takes
constant time

(a really bad
join order)

“Reading” the score
takes a very long time!

● Good vs. bad join orders: seconds vs. days
● Sometimes even the best join order still takes minutes or hours
● … and we need 10k to converge!

Sparse Rewards
● There are no intermediate rewards.

Reward: 0 Reward: 0 Reward: 10

After this state, we

can finally execute

the plan and get a

reward.

Reward: 2 Reward: 3 Reward: 5

Smooth, dense

reward across the

entire episode

What we’ve got

What we want

Potential Solutions
● We describe three possible

architectures:
– Learning from demonstration
– Cost-model bootstrapping
– Incremental learning

Learn from Demonstration
● “Cold start” learning occurs rarely in

nature
– Initial learning happens via imitation

● Can we learn from demonstration?
– Traditional query optimizer = adult
– DRL agent = child

Learn from Demonstration
● Let Q*(s) be the best possible latency we

could achieve from state (partial plan) s
– A lot like an optimizer cost model

● Idea: use a neural network, Q(s), to
estimate Q*(s)
– Initially, train this neural network through

observation of the expert system
– Then, refine it.

Learn from Demonstration
Q1 Q2 Q3 Q4

Traditional Query
Optimizer

Learn from Demonstration
Q1 Q2 Q3 Q4

Traditional Query
Optimizer

Q1: S
a

S
b

S
c

S
d P1

Q2: S
e

S
f

S
g

S
h P2

Q3: S
i

S
j

S
k

S
m P3

Q4: S
n

S
p

S
q

S
r P4

Learn from Demonstration
Q1 Q2 Q3 Q4

Traditional Query
Optimizer

Q1: S
a

S
b

S
c

S
d P1 Latency: 25ms

Q2: S
e

S
f

S
g

S
h P2 Latency: 22ms

Q3: S
i

S
j

S
k

S
m P3 Latency: 85ms

Q4: S
n

S
p

S
q

S
r P4 Latency: 107ms

Learn from Demonstration
Q1 Q2 Q3 Q4

Traditional Query
Optimizer

Q1: S
a

S
b

S
c

S
d P1 Latency: 25ms

Q2: S
e

S
f

S
g

S
h P2 Latency: 22ms

Q3: S
i

S
j

S
k

S
m P3 Latency: 85ms

Q4: S
n

S
p

S
q

S
r P4 Latency: 107ms

Training Data

Learn from Demonstration

Q1: S
a

S
b

S
c

S
d P1 Latency: 25ms

Q2: S
e

S
f

S
g

S
h P2 Latency: 22ms

Q3: S
i

S
j

S
k

S
m P3 Latency: 85ms

Q4: S
n

S
p

S
q

S
r P4 Latency: 107ms

Training Data

Q() = 25S
a

Q() = 25S
b

Q() = 25S
c

Q() = 25S
d

Q() = 22S
e

Q() = 22S
f

Q() = 22S
g

Q() = 22S
h

Q() = 85S
i

Q() = 85S
j

Q() = 85S
k

Q() = 85S
m

Q() = 107S
n

Q() = 107S
p

Q() = 107S
q

Q() = 107S
r

Learn from Demonstration
S

1

S
2 S

3

S
4

Learn from Demonstration
S

1

S
2 S

3

S
4

Q() = 205S
2

Q() = 87S
3

Q() = 43S
4

Learn from Demonstration
S

1

S
4

Q() = 36S
5

Q() = 42S
6

Q() = 88S
7 S

5
S

6

S
7

Learn from Demonstration
S

1

S
4

Q() = 39S
8

Q() = 60S
9

S
5

S
8

S
9

Learn from Demonstration
S

1

S
4

Q() = 39S
8

Q() = 60S
9

S
5

S
8

Learn from Demonstration
S

1

S
4

S
5

S
8

P1 Latency: 40ms

Learn from Demonstration
S

1

S
4

S
5

S
8

P1 Latency: 40ms

Q() = 25S
1

Q() = 43S
4

Q() = 36S
5

Q() = 39S
8

Predictions:

Learn from Demonstration
S

1

S
4

S
5

S
8

P1 Latency: 40msQ() = 40S
1

Q() = 40S
4

Q() = 40S
5

Q() = 40S
8

Update the network with:

Q() = 25S
1

Q() = 43S
4

Q() = 36S
5

Q() = 39S
8

Predictions:

Learn from Demonstration
S

1

S
4

Q() = 36S
5

Q() = 42S
6

Q() = 88S
7 S

5
S

6

S
7

Use the state with the lowest predicted latency
Result? Imitate & improve on the expert

Learn from Demonstration
S

1

S
4

Q() = 36 → 0.441S
5

Q() = 42 → 0.378S
6

Q() = 88 → 0.181S
7 S

5
S

6

S
7

Normalize the output, sample from the distribution
Result? Explore & exploit

Learn from Demonstration
S

1

S
4

Q() = 36 ± 20S
5

Q() = 42 ± 28S
6

Q() = 88 ± 5S
7 S

5
S

6

S
7

Use the variance of the predicated latency to decide
when to “ask the expert” again

Result? “Active learning”

Learn from Demonstration

From Demonstration

Desired behavior of a “learn from demonstration” system

Learn from Demonstration
● Take advantage of pre-existing

optimizers
– Bootstrap & surpass, hopefully!

● Drastically reduce convergence
time, while:
– Going beyond join ordering
– Using query latency, not cost model

Learn from Demonstration
● Challenges & Opportunities

– Trading off exploitation and exploration
– Balancing expert / exploratory data

● When do we “go back to the expert?”

– Managing uncertainty
● What to do when variance is high?

– How good does the expert need to be?
● Could we use something simple?

Potential Solutions
● We describe three possible

architectures:
– Learning from demonstration
– Cost-model bootstrapping
– Incremental learning

Cost-model Bootstrapping

Like practicing free throws before playing basketball

Incremental Learning

Instead of learning calculus from nothing, start with arithmetic,
then geometry, then algebra, etc.

Conclusions
● Vast research space for DRL applications

to query optimization
● Huge potential

– For increasing query performance
– For decreasing complexity

● These slides: http://rm.cab/cidr19
● Twitter: @RyanMarcus

http://rm.cab/cidr19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

