
NashDB: An End-to-End Economic Method for Elastic Database
Fragmentation, Replication, and Provisioning
Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, Solomon Garber

Brandeis University

[ryan,olga,sofiya,solomon]@cs.brandeis.edu

ABSTRACT

Distributed data management systems often operate on “elastic”

clusters that can scale up or down on demand. These systems face

numerous challenges, including data fragmentation, replication,

and cluster sizing. Unfortunately, these challenges have tradition-

ally been treated independently, leaving administrators with little

insight on how the interplay of these decisions affects query perfor-

mance. This paper introducesNashDB, an adaptive data distribution
framework that relies on an economic model to automatically bal-

ance the supply and demand of data fragments, replicas, and cluster

nodes. NashDB adapts its decisions to query priorities and shifting

workloads, while avoiding underutilized cluster nodes and redun-

dant replicas. This paper introduces and evaluates NashDB’s model,

as well as a suite of optimization techniques designed to efficiently

identify data distribution schemes that match workload demands

and transition the system to this new scheme with minimum data

transfer overhead. Experimentally, we show that NashDB is often

Pareto dominant compared to other solutions.

KEYWORDS

Database management systems; partitioning; fragmentation

ACM Reference Format:

Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, Solomon Garber.

2018. NashDB: An End-to-End Economic Method for Elastic Database Frag-

mentation, Replication, and Provisioning. In SIGMOD’18: 2018 International
Conference on Management of Data, June 10–15, 2018, Houston, TX, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3183713.3196935

1 INTRODUCTION

Large-scale elastic data management systems are becoming popular

as applications face increasing data sizes and workload demands.

These large-scale systems offer high availability and query perfor-

mance by fragmenting and replicating data across multiple cluster

nodes. The elasticity of these systems (growing and shrinking the

number of fragments, replicas, and nodes as needed) is critical for

handling workload spikes and reducing cluster maintenance costs.

Elastic distributed data management systems bring about many

complications for system administrators. First, administrators must

decide how many cluster nodes to provision, as under-provisioning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3196935

leads to diminished performance and over-provisioning leads to

undue resource usage cost. Second, administrators must decide

how to distribute data across the cluster. Since workloads often

change over time, static data distribution decisions can decrease

query performance. Third, supporting query prioritization, the ex-
pectation that queries with a higher priority should experience

relatively higher performance than ones with a lower priority, is

often expected. Thus, administrators must simultaneously navigate

cluster sizing, data replication, and data placement decisions, all

while taking into account query priorities and dynamic workloads.

Administrators typically approach these complex decisions by

manually adjusting the cluster size, re-partitioning, and re-replicating

the data to simply avoid hot spots. These decisions often rely on

rule-of-thumb estimations and gut instincts; even when adminis-

trators know exactly what performance levels are required, it is

difficult to translate performance goals and query prioritization

policies into an actualized distributed deployment (e.g., cluster size,

data fragments, replicas).

In this paper, we present NashDB, a data distribution and cluster

sizing framework for making priority-aware data distribution and

node provisioning decisions for read-only OLAP systems. NashDB

provides automatic data fragmentation, replication, placement, tran-

sitioning, and cluster sizing strategies, all while taking into account

user-defined query priorities. Ultimately, NashDB aims to balance

fragment and replica supply to workload demand, as captured by

query priority and data access patterns.

Previous works rarely address all of these issues in an end-to-end

manner. Several workload-driven fragmentation and replication

strategies (e.g., [12, 19, 24, 39, 41]) assume a fixed cluster size or do

not support query priorities. Many cluster sizing techniques (e.g., [9,

21, 26, 28, 30, 34, 37, 46]) rely on the underlying database to handle

fragmentation and replication. Existing work in elastic databases

(e.g., [13, 38, 42]) handle workload spikes by incrementally scaling

up/down the cluster, and re-distributing data on the new cluster

configuration. However, it is not straightforward to predict the

impact of adding/removing nodes on query performance.

NashDB relies instead on amore user-friendly approach: its takes

query prioritization – the monetary value of each query to the user

(i.e., the price the user is willing to pay for that query) – as an input,

and identifies the cluster size and data distribution scheme that

balances data supply to the value of incoming queries. NashDB uses

economics-inspired methods to make decisions about fragmenta-

tion, replication, and cluster sizing in an end-to-end manner while

respecting query priority. If all queries are assigned the same value,

NashDB will balance the data distribution to data access patterns,

adding more replicas for more popular tuples, scaling up the cluster

during workload spikes, and scaling down during lulls in activity.

When users adjust the value of queries, indicating their priority,

https://doi.org/10.1145/3183713.3196935
https://doi.org/10.1145/3183713.3196935

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

SQL
Query

Optimizer

S S

Query plan

{Range
scans

Tuple Value
Estimator

Scan
Router

Fragmentation
Manager

Replication
ManagerElastic cluster

N
as

hD
B

Distributed DBMS

Figure 1: NashDB system architecture

high-valued queries will experience better performance relative to

low-valued ones.

To accomplish this, NashDB first fragments the data by grouping

together adjacent tuples that have similar value, a metric defined

based on the frequency and price of the queries accessing a tuple.

NashDB relies on a novel tuple value estimation tree structure for

efficiently storing and retrieving tuple values. Second, NashDB

replicates fragments proportionally to their aggregated tuple value.

In this stage, we model each fragment as a product that can be

offered by the cluster. We replicate each fragment the same number

of times that the an ideal free market would choose to “offer” it (i.e.,

until it is no longer profitable to add one more replica), and we show

that this replication strategy results in a Nash equilibrium. NashDB

then allocates replicas onto “just the right number” of cluster nodes,

and routes data access requests to nodes aiming to minimize data

access latency. Finally, it includes a mechanism for transitioning

the cluster from an old data distribution scheme to a new scheme

with minimal data transfer overhead. Collectively, these techniques

can produce systems that offer low query execution times.

The contributions of this paper are:

• a data fragmentation algorithm that is aware of data access

patterns and query priorities,

• a replication algorithm that balances replica supply to work-

load demands,

• an algorithm for transitioning between two different data

distribution schemes with optimal data transfer overhead,

• and a latency-aware strategy for routing data access requests

to cluster nodes.

The rest of this paper is organized as follows. Section 2 describes

the NashDB system model and Section 3 presents the economic in-

tuition behind NashDB. Section 4 describes how NashDB maintains

tuple value information. Section 5 describes our fragmentation ap-

proach and Section 6 introduces our replication algorithm. Section 7

describes the mechanism for transitioning between distribution

schemes and Section 8 introduces our data access routing approach.

Related work is presented in Section 9. Experimental results are

presented in Section 10, and concluding remarks are in Section 11.

2 SYSTEM MODEL

NashDB is a data distribution framework for read-only OLAP an-

alytic applications. Figure 1 depicts our system model. NashDB

serves a distributed DBMS running on an elastic cluster (e.g., a

cluster built on a IaaS provider [2, 3, 5] or a private cloud). We

assume a shared-nothing cluster where each node has access to

a fixed amount of non-shared storage, e.g. local SSD or attached

Amazon EBS volumes [1].

NashDB generates fragmentation, replication, and cluster sizing

strategies that are aware of query priorities and adapt to workload

shifts. We conceptualize the priority of each query as the price the

user is willing to pay to process that query. The higher the query

price (a.k.a. the query’s value) the more resources (i.e., replicas,

cluster nodes) will be allocated to serve that query, relatively to

lower-priced queries. Hence, higher-priced queries will enjoy im-

proved performance related to low-priced ones. Under no query

prioritization (i.e., all queries are assigned the same price), NashDB

still adapts the number of replicas and the cluster size to data access

patterns, scaling up the cluster during workload spikes, and scaling

the cluster down during lulls in activity.

NashDB examines both query prices and query plan information

from incoming queries to analyze tuples access frequency and to

estimate the “importance” of a tuple (aka tuple value). As shown
in Figure 1, incoming queries are analyzed by the DBMS optimizer.

NashDB receives the scans on the plan’s input relations. In OLAP

applications, these data access scans are typically performed on

ordered relations (i.e., a clustered table is ordered on a primary key).

Since these scan operators retrieve contiguous range of tuples, we

refer to them as “range scans” or “scans.” Since NashDB’s goal is

to understand data access patterns, we consider all fetched tuples

to be accessed by a query, even if a range scan fetches a block of

tuples that is irrelevant to the query, or that are later filtered out.

Data access scans are sent to the tuple value estimator, which
maintains a value estimate of each tuple in the database. These es-

timates are used periodically by the fragmentation manager, which
responds to changes in data access patterns by computing updated

fragmentation schemes. New schemes are sent to the replication
manager, which determines (a) how many times to replicate each

fragment, and (b) how to allocate these replicas across a cluster of

“just the right size”. NashDB also facilitates the transitioning from

one distribution scheme to another with minimal data transfer over-

head. Finally, for each incoming query, the scan router dispatches
data access requests to data replicas, accounting for both the span

(the number of nodes serving a request) and data access latency.

3 ECONOMIC MODELING

The primary intuition behind NashDB is an economic model of
nodes, data, and queries. NashDB models queries as customers

(“patrons”) who purchase data (“goods”) from nodes (“firms”). The

priority of a query is modeled as a price that the user is willing to

pay to acquire the data needed to process the query – a higher price

represents a higher priority. As in a free market, NashDB seeks to

balance the supply of data with the demand for data. This entails

identifying a data distribution scheme that is in Nash equilibrium.

In order to achieve this, we depend on economic theory and the

efficiency of market systems. We next describe our model.

Problem Statement Let us assume a distributed DBMS running

on an elastic cluster. Each cluster node has a cost per unit time it is

used (e.g., rent cost) and a certain amount of disk space for storing

data. We also assume the DBMS operates on a horizontally frag-

mented data set. Here, tables are stored in some physical ordering

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

(e.g. arbitrary or clustered), and tables are horizontally fragmented

into a set of disjoint fragments. The first task of NashDB is to con-

tinuously evaluate the fragmentation of each table in the database,

and identify new fragmentation schemes that match the data access

patterns of incoming queries.

Each incoming query has an associated price indicating its pri-

ority. In our economic model, a query’s price is equally divided

among the tuples accessed by that query (formalized in Section 4.1).

NashDB continuously monitors the tuples accessed by incoming

queries and the price paid for each tuple in the database. Since

tuples are organized into fragments, this allows us to define the

value of a fragment, i.e., the total expected income earned from all the

tuples in a fragment. The value of a fragment is affected by (1) the

price of the queries accessing the fragment (higher-priced queries

provide more value), and (2) the number of queries accessing a

fragment (a higher number of queries provide more value).

We model each fragment as a good that can be provided by a

node. A node is paid by queries for access to fragments, and thus

each node has an incentive to provide fragments. The higher the

price of a query, and the higher the size of the fragment a node

provides for that query, the more income the node will receive

from that query. However, nodes must pay costs for each provided

fragment (e.g. storage fees). Therefore, nodes wishing to maximize

their income will only choose to provide profitable fragments.

Furthermore, fragments are replicated across the cluster nodes.

As in a market system, an increase in the supply of a good results in

a decrease in the price of that good. Specifically, as the number of

nodes providing a replica of a fragment increases (an increase in sup-

ply), the income a node expects to receive from a replica decreases.

Eventually, we aim to replicate each fragment such that storing

that a replica of that fragment is minimally profitable: all current

replicas are profitable, but the cost of storing a single additional

replica exceeds the diminished expected income from that replica.

In this setting, NashDB strives to balance supply against demand: it
seeks to replicate each fragment such that each replica is expected

to be profitable, but offering an additional replica does not increase

the expected profit for any of the cluster nodes. This condition

represents a Nash equilibrium [33] (formalized in Section 6).

4 TUPLE VALUE ESTIMATION

To measure demand (and thus balance it against supply), NashDB

maintains an estimate of the monetary value of each tuple in the

database. Next, we provide the formal definition of tuple and frag-

ment value and we introduce an augmented binary search tree

structure that enables efficiently storing and accessing these values.

4.1 Tuple & Fragment Value Definitions

Here, we formally define the notation of tuple value. For each incom-

ing query q, let the associated query price (or priority) be Price(q),
and let Sq be the scans issued by the corresponding query execu-

tion plan (see Figure 1). Since the input relations of our queries

have some physical ordering (e.g. arbitrary or clustered), we de-

note the starting (inclusive) and ending (exclusive) tuples of a

scan si ∈ Sq as Start(si) and End(si), respectively.
1
We define

1
The Star t (si) and End(si) values refer to the index of a tuple relatively to the

physical ordering of the original table.

the size of a scan to be equal to the number of tuples it accesses, i.e.,

Size(si) = End(si) − Start(si). Next, we define the price of a range
scan operation of a query q, Price(si), to be proportional to its size

as follows:

Price(si) =
Size(si)∑

sj ∈Sq Size(sj)
× Price(q) (1)

Intuitively, the monetary value of each tuple is the amount of in-

come that tuple generates from scans. Given the price of a range

scan si , Price(si), the value from each tuple retrieved by the scan si
is Pr ice(si)/Size(si). Since tuples are accessed by multiple scans from

different queries with potentially diverse prices, NashDB maintains

an average value estimate V (x) for all tuples over a windowW of

the most recent range scans. This value represents the income a

node can expect to receive per scan by holding a copy of a tuple,

assuming there are no other copies of that tuple:

V (x) =
1

|W |

∑
si ∈W

{ Pr ice(si)
Size(si)

if x was read by si

0 otherwise

(2)

Given the value of tuple, we can now define the value of a frag-

ment. Similarly to a range scan, a fragment fi of a table t is an
ordered set of tuples (according to the physical ordering of the table

t) starting at the tuple with index Start(fi) and ending at the tuple

with index End(fi). We define the size of fragment to be equal to

number of tuples it holds, i.e., Size(fi) = End(fi) − Start(fi). Next,
we define the value of a fragment fi , Value(fi), as the sum of the

average value of each tuple within that fragment. Formally:

Value(fi) =

End (fi)∑
x=Star t (fi)

V (x) (3)

We use the value of each fragment to decide how many times a

particular fragment should be replicated (see Section 6). Because

storing values for each tuple would be costly, we next introduce

a tree structure to allow for fast computation of fragment values

while using relatively little storage.

4.2 Value Estimation Tree

NashDB must track the average monetary value of each tuple. How-

ever, storing the value of each tuple directly in the database would

introduce significant overhead. Thus, we introduce a tuple value
estimation tree, an augmented binary search tree, similar to an inter-

val tree [15], which enables efficient storage and retrieval of tuples

values based on a window of processed range scans.

Intuitively, the tree works by tracking the change in themonetary

value of each tuple compared to the value of the previous tuple

based on the relation ordering. The monetary value of a tuple,

relative to the previous tuple, can only change if a scan stops or

starts at that tuple. Thus, a node is added to the tree for each unique

starting point and stopping point of the processed data access scans

within the window of scansW .

Let us denote as ni a node of the tree, with key K(ni) being
the tuple index represented by the tree node (i.e., a unique start-

ing/ending point). Each tree node ni also stores the price of the

scans starting or ending at K(ni), S(ni) and E(ni), respectively. For-
mally, withW representing the current window of recent range

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

0 [S: 1, E: 0]

4 [S: 0.5, E: 0]

5 [S: 0, E: 1]

7 [S: 2, E: 0]

10 [S: 0, E: 2.5]

0 1 2 3 4 5 6 7 8 9

s
3 Price(s

3
)= 5

s
2 Price(s

2
)= 3

s
1 Price(s

1
)= 6

1 1.5 .5 2.5

Tuple
10

0

Figure 2: Example value estimation tree. Each node represents a

starting or ending point for a scan, and the S and E fields correspond

to the value of the range scans “starting” and “ending”, respectively.

scans, these prices can be defined as:

S(ni) =
∑ {

Price(sj)

Size(sj)

���� sj ∈W ∧ Start(sj) = K(ni)

}
E(ni) =

∑ {
Price(sj)

Size(sj)

���� sj ∈W ∧ End(sj) = K(ni)

}
Example Figure 2 shows three example range scans and the

corresponding tree. Each tree node represents a starting or ending

point of one or more scans, e.g. the root node r has a key ofK(r) = 7,

which corresponds to Start(s1) = 7. Similarly the tree has nodes

with keys equal to 4, 5, 0, and 10 because there are scans that start

or end at these tuples. For the root r with K(r) = 7, the value S(r)
is equal to the sum of the normalized price for all scans starting at

tuple 7. Since s1 is the only scan that starts at tuple 7, its price is 6,

and it touches 3 tuples, we have S(r) = 6/3 = 2. The value E(r) is
zero, because no scans end at tuple 7. Similarly, for the rightmost

node n with a key of K(n) = 10, the associated scans are s1 and s2,
which end at tuple 10. Since scans s1 and s2 have prices of 6 and 3

respectively, the node has E(n) = 6/3 + 3/6 = 2.5.

Algorithm 1 Value estimation tree iteration

function IterateValues(tree)
α ← 0

for ni ∈ tree (in-order) do
α ← α + S(ni) − E(ni)
NoteValue(K(ni),K(ni+1),

α
|W |)

end for

end function

Tree Lookups Since the tuple value at a key K(ni) increases by
S(ni) and decreases by E(ni), the value of any tuple x , V (x), can be

determined by summing the S(ni) − E(ni) values for all nodes ni
such thatK(ni) ≤ x . Thus, the value of every tuple can be computed

using an in-order traversal of the tree (Algorithm 1). We initialize

an accumulator α = 0, and then begin an in-order traversal of the

tree. For each node ni in the traversal, we add the value of S(ni)
and subtract the value of E(ni) from α . We then note that the value

of all tuples from K(ni) to K(ni+1) have a value of α . Since this

process requires only an in-order traversal of the tree, it requires

O(|W |) time and constant space.

Example We next show how we iterate through the tree in Figure 2,

which is created over a window of |W | = 3 scans. We first set α = 0

and then begin an in-order traversal of the tree. The first node is 0,

so we add its S value to α , yielding α = 1. This means that all the

tuples from the current node (0) to the next node (4) have a value

of
α
|W | =

1

3
. The next node is 4, and we add its S value of 0.5 to α ,

yielding α = 1.5. Therefore, all the tuples from the current node (4)

to the next node (5) have a value of
1.5
3
. The next node is 5, which

has an E value of 1, so we subtract 1 from α , yielding α = 0.5. We

note that all tuples between 5 and 7 have a value of
0.5
3
. Processing

the next node, 7, gives α = 2.5 and tells us that the tuples between

7 and 10 have a value of
2.5
3
. Finally, processing node 10 causes us

to subtract 2.5 from α , yielding α = 0. This signifies that all tuples

10 and above have a value of zero.

Tree UpdatesWhen a query q arrives, the starting and stopping

points of its scans si ∈ q can be inserted into the tree by search-

ing the tree for a node n1 with K(n1) = Start(si) and a node n2
with K(n2) = End(si), and then incrementing S(n1) and E(n2) by
Pr ice(si)/Size(si). If either n1 or n2 do not exist, they are created.

The balance of the tree can be maintained using standard tech-

niques [8]. A scan is removed by finding the appropriate n1 and n2
nodes, decrementing the S(n1) and E(n2) values, and then removing

either node if both S(ni) and E(ni) are zero.
To remove scans that fall outside the scan window size, we

additionally store a circular buffer of (Start(si), End(si), Price(si))
values for each scan si in the scan window. When a new query

q arrives, the scans si ∈ q are added to the buffer, and if the size

of the buffer exceeds the scan window size, the oldest scans are

removed from the buffer and the tree. Since adding and removing

an element from the buffer takesO(1) time and inserting/retrieving

values from a binary search tree requires O(logn) time, inserting

a new scan into the tree can thus be done in O(log |W |) time, and

the tree itself requires O(|W |) space. Additional optimizations are

given in Appendix A.

Scan Window Size The size of the window of scans controls how

responsive the value estimation tree is to changes in a workload.

Small scan window sizes cause the value estimation tree to respond

quickly to the most recent queries, as the scans of old queries will be

quickly evicted from the buffer. Large scan window sizes enable the

value estimation tree to capture more complex workload trends (e.g.

when queries become small and disjoint, or simply more complex).

The scan window size must be tuned by the administrator, aiming

for a value that is sufficient to capture access patterns and respond

to changes at an acceptable rate.

5 FRAGMENTATION

In traditional distributed DBMSes (e.g., [6, 25]), fragmentation

schemes are chosen by skilled administrators, who normally use a

value-based or hash-based approach. However, such fragmentation

approaches are difficult to tune and require frequent intervention

as workloads shift. Furthermore, this approach, as well as previous

techniques (e.g., [12, 24, 39, 42]) are agnostic to query priorities and

often act independently from replication decisions.

NashDB introduces an automatic and workload-driven approach

to fragmentation that is also tightly coupled to replication. NashDB

fragments data and replicates fragments across multiple machines.

As described previously, NashDB maintains an up-to-date estimate

of the value of each fragment. Given this value, NashDB aims to

replicate fragments with higher value because they are required

by more scans (or by higher priced/priority scans). Specifically,

we want to replicate fragments proportionally to each fragment’s

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Tuple

V
a
lu
e

c
1

c
2

mean

Figure 3: An example of an imbalanced fragment: the tuples in c1
will be under-replicated, and the tuples in c2 will be over-replicated.

value, which is the sum of the values of the tuples in the fragment.

Since fragments will be replicated based on their value, we strive

to create fragments where the monetary value of each tuple is as

uniform as possible. This avoids under or over replicating tuples.

To illustrate this, consider Figure 3, which shows an example of

a fragment with non-uniform value. The dotted line indicates the

average value of the fragment. The tuples labeled c1 have a value
less than the mean, and the tuples labeled c2 have a value greater
than the mean. If the entire fragment is replicated based on its mean

value, then the tuples labeled c1 will be over-replicated, and the

tuples labeled c2 will be under-replicated. To create fragments that

are as uniform as possible, the tuples in c1 and c2 should be placed

into different fragments.

We next explain how fragment uniformity is measured, and give

the optimization problem to be solved. Then, we present two auto-

matic fragmentation algorithms. The first uses a dynamic program-

ming scheme [29] to find optimally uniform fragments for small

databases. The second uses a greedy heuristic to create good, but

not necessarily optimal, fragmentation schemes for large databases.

5.1 Fragment Uniformity

One intuitive measure of the inefficiency caused by variation from

the mean value within a fragment is the unnormalized variance,

which we refer to as the error. If the fragment fi stores the tuples
from index Start(fi) to End(fi) and the number of tuples it includes

is Size(fi) = End(fi) − Start(fi), then this error can be defined as:

Err (fi) =

End (fi)∑
x=Star t (fi)

(
V (x) −

Value(fi)

Size(fi)

)
2

(4)

Maximally uniform fragments could be created by placing each

tuple into its own fragment, but this level of granularity could not

be effectively stored in disk blocks. Since a block represents the

minimum level of granularity readable by a disk, we set a cap on the

maximum number of fragments,maxFraдs , such that, on average,

each fragment fits in a disk block.

We choose to make the average fragment size equal to the size of

a disk block instead of requiring each fragment to be approximately

the size of a block. Doing so enables our fragmentation algorithm

to pack even small groups of high-valued tuples into fragments that

can be highly replicated. If a small set of high-valued tuples were

forcibly grouped with neighboring low-value tuples, the resulting

fragment would not be sufficiently replicated. By requiring that

only the average fragment size be equal to the disk block size, we

balance disk-read efficiency with the total fragment error. We thus

seek a set of horizontal disjoint fragments F = { f1, f2, ...} of each

table that minimizes the sum of the errors:

min

F

∑
fi ∈F

Err (fi), subject to |F | =maxFraдs (5)

5.2 Computing Optimal Fragments

Prior work [20, 22, 29] has shown how to find optimal fragmenta-

tions using dynamic programming inO(kn2) time andO(kn) space,
where n is the number of tuples in the table to be fragmented and

k is the number of fragments. This solution works with arbitrary

error functions, but requires the error function for a potential frag-

ment starting at Start(fi) and ending at End(fi) to be computable in

constant time. We next explain how our error function (Equation 4)

can be computed in constant time.

Since our error function is the unnormalized variance of a frag-

ment, it can be expressed in terms of the squared sum and sum of

squares of each fragment (see Appendix B for a derivation):

Err (fi) =

End(fi)∑
x=Star t (fi)

V (x)2 −
©«

End (fi)∑
x=Star t (fi)

V (x)
ª®¬
2

(6)

We can thus compute the error of our potential fragment, Err (fi),
using only the squared sum of values and the sum of squared val-

ues between Start(fi) and End(fi). Therefore, we precompute two

arrays of size n, s and s2, to store the cumulative sum and sum of

squared V (x) values for all tuples up to y, 0 ≤ y ≤ n:

s[y] =

y∑
x=0

V (x) s2[y] =

y∑
x=0

V (x)2

Both sums can be computed trivially in linear time. The error

function Err (fi) can thus be computed in constant time:

Err (fi) = (s2[End(fi)] − s2[Start(fi)])−(s[End(fi)] − s[Start(fi)])
2

Using these precomputed values, the dynamic programming

scheme of [29] can be used to find an optimal fragmentation. How-

ever, the time complexity of O(kn2) and the space complexity of

O(nk) may be prohibitive for very large databases. In the next sec-

tion, we present a greedy approximation for optimizing Equation 5.

5.3 Greedy Fragmentation

For very large databases, computing the optimal fragmentation

could be time and space prohibitive. For this case, we propose a

greedy strategy based on successively splitting and merging to-

gether fragments in a way that greedily minimizes the fragment

error (Equation 4) at each step.

Given a cap on the maximum number of fragments to create,

maxFraдs , our greedy fragmentation consist of two procedures:

• When the number of fragments is less thanmaxFraдs , we
split one fragment into two in a way that maximizes unifor-

mity within the resulting fragments.

• When the number of fragments is equal tomaxFraдs , we
merge three adjacent fragments into two fragments in a way

that maximizes uniformity within the resulting fragments.

The merging and splitting procedures are executed at user-

specified time intervals. Both procedures make greedy decisions

that minimize error and help adapt the fragmentation scheme to

dynamic workloads. Intuitively, the splitting procedure splits the

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

Tuple

V
a
lu
e

Tuple
V
a
lu
e

Tuple

V
a
lu
e

s

Figure 4:When considered, these three adjacent fragments will be

joined into two fragments, split at the point marked by S .

most advantageous fragment, increasing the number of fragments

by one and decreasing the error. However, once the splitting pro-

cedure has createdmaxFraдs fragments, no new fragments can be

created, but the workload may still shift over time. The merging

procedure is then used to decrease the number of fragments by

one – it selects the three fragments that, when combined into two,

increase the error the least. This allows the splitting procedure to

find new splits that are beneficial to the shifted workload.

5.3.1 Fragment Splitting. Intuitively, splitting a fragment at the

right point can reduce the unnormalized variance by creating two

new fragments where the values of each tuple in each new fragment

are closer to the fragment’s mean. For example, the fragment in

Figure 3 could be split at the point between c1 and c2 to create two

new fragments with significantly lower unnormalized variance.

In order to split one fragment into two, we first determine the

optimal splitting point, Split(fi), for each fragment fi ∈ F . Then, we
select the fragment for which the optimal splitting point produces

the greatest reduction in error. Formally, we define Split(fi), the
optimal splitting point for a fragment fi , as the split point that

would result in the minimum sum of error:

Split(fi) =min

p

[
Err (fj) + Err (fk)

]
s.t. (7)

Start(fj) = Start(fi),End(fj) = p

Start(fk) = p,End(fk) = End(fi)

To find this split point, one can track the sum and the sum of

the squared valueV (x) for all tuples with an index (position within

the fragment) less than the currently considered point, and for all

tuples with an index greater than the currently considered point.

These values can be used to compute the quality of a potential split

using Equation 6. This split point can be efficiently computed in

constant space and O(n) time, where n is the number of tuples in

the fragment. We give the precise algorithm in Appendix C.

After computing the optimal split points, Split(fi), for each

fi ∈ F , we select the fragment for which the split produced the

largest reduction in error.
2
That is, we split the fragment fi into

the fragments fj and fk for which Err (fi) −
(
Err (fj) + Err (fk)

)
is maximized. While greedy, each split operation is guaranteed to

reduce the sum of unnormalized variance [10] of the fragmentation.

If the fragmentation scheme is already optimal, the split will leave

the sum of the unnormalized variance unchanged.

5.3.2 Fragment Merging. Simply using the splitting procedure

until the maximum number of fragments have been created is

not enough to enable NashDB to adapt to changes in workload.

Thus, when the maximum number of fragments have been created,

2
In practice, to avoid unnecessary splitting, one might wish only to split a fragment if

the reduction in unnormalized variance is sufficiently large.

NashDB recombines fragments with similar means so that more

advantageous splits can be found. Since adjacent tuples are likely

to have similar value, NashDB seeks to combine adjacent fragments

where the mean value of both fragments are similar.

A simple strategy of combining pairs of adjacent fragments

leaves room for improvement. Consider the three adjacent frag-

ments in Figure 4. The second and third fragments have similar

mean value, so a simple strategy would combine them. However,

the combined second and third fragments have a mean value sig-

nificantly different from the first fragment’s mean. Even though

the tuples on the right-hand side of the first fragment could be

advantageously combined with the second fragment, the simple

fragment joining strategy may never combine them.

Thus, we consider merging three adjacent fragments into two.

Our merging procedure is motivated by the fact that the best single

split point (Equation 7) can be found in linear time, whereas finding

the optimal split point for turning k ≥ 4 adjacent fragments into

k − 1 fragments would require quadratic time.

Intuitively, NashDB’s fragment merging procedure works by

first measuring the unnormalized variance of joining together each

window of three adjacent fragments into two hypothetical frag-

ments, and then selecting the triplet of adjacent fragments that

led to the best observed unnormalized variance. This results in

one fewer total fragments. Formally, we check each adjacent set

of three fragments, fi , fj and fk , and find the point that optimally

divides the three fragments into two new fragments, fα and fβ .

Merдe(fi , fj , fk) =min

p

[
Err (fα) + Err (fβ)

]
s.t.

Start(fα) = Start(fi),End(fα) = p

Start(fβ) = p,End(fβ) = End(fk)

Start(fi) < Start(fj) < Start(fk)

We then select the triplet of fragments which, when joined into

two fragments, maximizes the decrease (or, when this is not possi-

ble, minimizes the increase) of the total sum of the errors. Specifi-

cally, we select the triplet for which Err (fi) + Err (fj) + Err (fk) −[
Err (fα) + Err (fβ)

]
is minimized. This will not always decrease

the sum of unnormalized variance, but this will always decrease

the number of fragments by one. If the number of fragments before

joining was maxFraдs , this allows the splitting procedure (Sec-

tion 5.3.1) to be performed again. As workloads shift, this ensures

that NashDB can continuously adapt its fragmentation scheme.

6 REPLICATION

Given any fixed fragmentation scheme (optimally or greedily gen-

erated), NashDB decides (1) how many replicas of each fragment

to create, (2) how many cluster nodes to provision, and (3) how

to allocate replicas onto those nodes. We refer to these decisions

collectively as a cluster configuration. Intuitively, fragments with

higher value (fragments which are used by high-value queries, or a

large number of low-value queries) should be replicated more than

fragments with lower value. Our goal is to identify a configuration

such that the demand for a fragment (the fragment values) is bal-

anced against the cost of storing these fragments (the number of

replicas of these fragments and their associated storage costs).

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Many different configurations may balance the number of repli-

cas and the cost of storing each replica, but we aim for a configura-

tion that is in Nash equilibrium. Intuitively, a solution is in Nash

equilibrium if and only if no single node can unilaterally increase

its profit by dropping, adding, or swapping replicas. While previ-

ous work [41] used economic models to offer similarly balanced

replication schemes, their approach relies on market simulation

and hence slowly reaches Nash equilibrium with high probability

given sufficient time. A major advantage of NashDB lies in its abil-

ity to compute a converged solution directly, without requiring a

costly market simulation. Our algorithm assumes a fixed fragmen-

tation scheme as an input, and will find a Nash equilibrium for any

fragmentation scheme.

Nash equilibrium Let us assume a cluster where each node has

some usage cost Cost per unit time (e.g., rent cost), as well as some

fixed disk capacity Disk . Then the average cost of disk storage per

time period is
Cost
Disk . For simplicity, we assume that the cost and

disk space of all nodes are equal, but our techniques can be easily

extended to work with non-uniform costs and disk sizes.

Given a set of fragments G to replicate on an elastic cluster,

the expected cost of storing a replica of fragment fi ∈ G with size

Size(fi) on a cluster node is:

C(fi) = Size(fi) ×
Cost

Disk

The expected income per replica of a fragment fi , I (fi), is then
the expected income of the fragment fi over a window of scansW ,

divided by the number of replicas for that fragment, Replicas(fi).
Hence, the more replicas are available, the lower their value is to

the nodes. This expected income is defined as:

I (fi) = |W | ×
Value(fi)

Replicas(fi)

Finally, ignoring the cost of unused space, we define the profit

of a nodemi ∈ M storing replicas of a set of fragments Gi ⊂ G as:

Pro f it(mi ,Gi) =
∑
fi ∈Gi

I (fi) −C(fi) (8)

Definition 6.1. We say that a cluster configuration is in Nash

equilibrium if and only if all of the following hold: (1) no node can

remove a fragment to gain a profit, (2) no node can add a fragment

to gain a profit, (3) no node can swap one fragment for another and

gain a profit, and (4) no new node can find any set of fragments

such that it produces a profit if added in the cluster. This definition

is formalized in Appendix D.

We next express NashDB’s algorithm for finding a cluster con-

figuration that meets Definition 6.1, followed by a proof of the

algorithm’s correctness. Our algorithm works in two parts. First,

given a set of fragmentsG to replicate, we determine the number of

replicas, Replicas(fi), for each fragment fi ∈ G. We replicate each

fragment fi such that any node owning one of the replicas of fi
will make a profit, but if a single extra replica of fi is created, no
node owning a replica of fi will make a profit. Second, we find an

assignment of these replicas to cluster nodes.

Number of Replicas We define Ideal(fi) as the largest value of
Replicas(fi) such that the profit from owning a replica of fi is at

least zero, but adding an extra replica would cause the profit to go

below zero. Thus, Ideal(fi) is equal to:

max

Replicas(fi)
|W | ×

Value(fi)

Replicas(fi)
− Size(fi) ×

Cost

Disk
≥ 0

It is trivial to show that the ideal number of replicas to create for

a particular fragment is equal to the total revenue earned by the

fragment divided by the cost of the fragment:

Ideal(fi) =

⌊
|W | ×Value(fi)

Size(fi) ×
Cost
Disk

⌋
=

⌊
|W | ×Value(fi) × Disk

Size(fi) ×Cost

⌋
(9)

Intuitively, this formula states that when any of (1) the number of

scans per unit time, (2) the average value of the tuples in a fragment,

or (3) the amount of disk space available increases (ceteris paribus),
the number of replicas should increase. Additionally, if the size of

the fragment or the cost of a node increases (ceteris paribus), the
number of replicas should decrease.

Replica Allocation The formulation of profit given in Equation 8

does not penalize nodes for unused disk space (it assumes each node

only pays for used space). However, costs are normally incurred

regardless of howmuch local disk space is used. In order tominimize

wasted space, we will seek the tightest possible packing of the

selected number of replicas into the fewest number of nodes.

We constrain ourselves to assignments where no node gets a

duplicate of a fragment (since storing the same data twice on the

same machine would not be useful). Finding an assignment of

each replica to one of a minimal number of cluster nodes, thus

achieving the minimumwasted free space, is equivalent to the class-

constrained bin packing problem [40], which is NP-Hard. However,

there are greedy heuristics with known error bounds [17, 45].

We employ the Best First Fit Decreasing (bffd) algorithm of [45],

which has an approximation factor of 2.bffdworks bymaintaining

a list of nodes (bins)M , initially with a single empty machine. bffd

first places the replicas of the fragment fi for which Replicas(fi)
is the highest. To place a replica, bffd scans the current list of

machinesM and places the replica on the first machine on which

the replica fits. If no such machine exists, a new one is created and

added to the end of the list. Once all of the replicas of fi are placed,
bffd moves on to the fragment with the next highest number of

replicas. This process repeats until all replicas are placed.

This procedure may still leave unused space on some nodes. One

could take advantage of this small amount of extra space to store

additional replicas. This would ignore the economic model (the

additional replicas are not profitable), and might produce additional

overhead when transitioning the cluster.

Theorem 6.1. The set of cluster nodes produced and the associated
replication scheme is in Nash equilibrium.

Proof. The intuition is that Equation 9 replicates each fragment

such that each replica’s profit is greater than or equal to zero, but

creating one additional replica of any fragment will cause the profit

to go below zero. Therefore, deleting or adding any fragment (in-

cluding in a swap) cannot increase profit. We prove that each of four

conditions given in Definition 6.1 are satisfied in Appendix E. □

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

7 CLUSTER TRANSITIONING

At user-specified time intervals, NashDB will use the up-to-date

tuple value estimator to compute a new fragmentation and replica-

tion scheme. Once this new scheme is selected, NashDB transitions

the cluster from the old scheme to the new scheme, which might in-

clude changes to (1) fragment boundaries, (2) the number of replicas,

(3) the number of cluster nodes, and (4) the allocation of replicas to

nodes. Finding the transition strategy that minimizes data transfer

is critical to quickly transitioning between schemes.

The problem of finding the optimal transition strategy can be

expressed as a bipartite graph matching problem. Each node in the

old scheme is represented as a vertex in the first partition of the

graph, and each node in the new scheme is represented as a vertex in

the second partition. The edges between the vertices represent the

cost of transitioning one node into another. The minimum-weight

perfect matching, which can be found using the Kuhn-Munkres

algorithm [23], represents the optimal transitioning strategy.

Formally, given initial nodes {m1,m2, . . . ,mk } ∈ V and a new

configuration {m′
1
,m′

2
, . . . ,m′j } ∈ V

′
, we create a bipartite graph

G = {V ∪V ′,E}.G is complete, i.e. E = {(m,m′) | m ∈ V ,m′ ∈ V ′}.
If the number of nodes in each partition are not equal (i.e, |V | ,
|V ′ |), we add “dummy vertices” to whichever partition (V or V ′)
has fewer vertices so that |V | = |V ′ |. A dummy vertex in the first

partition V represents a node that will be added (the new scheme

has more nodes than the previous scheme), and a dummy vertex

in the second partition V ′ represents a node that will be removed

(the previous scheme has more nodes than the new scheme).

The edge weights,w(mi ,m
′
j), between two verticesmi ∈ V and

m′j ∈ V ′ represent the total amount of data that would have to

be transferred to transitionmi intom
′
j . Intuitively, turning a node

in the old scheme into a node in the new scheme with similar

fragments should have a low cost, and turning a node in the old

scheme into a node in the new scheme with dissimilar fragments

should have a high cost. Let Data(mi) = {ta , tb , . . . } represent the
tuples assigned to fragments on machinemi , and let Data(m′j) −

Data(mi) be the tuples that are on m′j but not on mi . Then, the

edge weightsw(mi ,m
′
j) can be defined as:

• When mi ∈ V is not a dummy vertex and m′j ∈ V ′ is a

dummy vertex, the edge (mi ,m
′
j) represents entirely remov-

ing the node represented bymi , so the weight of the edge is

zero, i.e.w(mi ,m
′
j) = 0.

• When mi ∈ V is a dummy vertex and m′j ∈ V ′ is not a

dummy vertex, the edge (mi ,m
′
j) represents provisioning

a fresh node, so all the data required, Data(m′j), must be

copied. Therefore,w(mi ,m
′
j) = |Data(m

′
j)|.

• Whenmi ∈ V andm′j ∈ V
′
are both non-dummy vertices,

the edge (mi ,m
′
j) represents turningmi intom

′
j . The new

data that must be copied is any data that is onm′j but not on

mi , sow(mi ,m
′
j) = |Data(m

′
j) − Data(mi)|.

We define a transition strategy, T , to be a perfect matching of G:
a set of edges such that each vertex appears in exactly one edge.

The bold edges in Figure 5 shows one such perfect matching. An

edge (mi ,m
′
j) ∈ T means that the machine represented bymi is

turned into the new machine represented bym′j . SinceT is a perfect

(0, 20)

(30, 50)

(20, 30)

(30, 50)

(0, 20)

(50, 75)

Old

(0, 20)

(20, 35)

(35, 55)

(55, 75)

New

10

25

0

20

25

0

15

15

0

Figure 5:Aperfectminimalweight bipartitematching between the

old scheme (left) and the new scheme (right). The original top and

bottom nodes transition, and the middle node is destroyed.

matching, every machine in the old scheme is turned into some

machine in the new scheme (or deleted / created, if matched with

a dummy vertex). Note that it is impossible for bothmi ∈ V and

m′j ∈ V ′ to be a dummy vertex, since dummy vertices are only

added to the partition with fewer members (i.e., a dummy vertex

can be added to either V or V ′, but not both).
The cost (number of tuples to be copied) for a strategy T is the

sum of the edge weights, and we seek the optimal T . Letting T be
the set of all possible perfect matchings, the optimal T ∈ T is:

min

T ∈T

∑
(mi ,m′j)∈T

w(mi ,m
′
j) (10)

While there are O(|V |!) possible perfect matchings, the Kuhn-

Munkres algorithm [23] can find the minimal perfect matching in

O(|V |3) time [43]. In our experiments, we found standard imple-

mentations [4] to be sufficiently fast even for thousands of nodes.

Example Figure 5 shows an example graph. The left-hand side

represents the old configuration (S), containing three nodes. The
right-hand side represents the new configuration (S ′). Each edge

weight represents the cost of turning the left-hand side node into

the connected node on the right-hand side. For example, the edge

weight between the two top-most nodes is 10, because 10 new

tuples would need to be transferred. The edge weight between the

middle two nodes is 25, because tuples 50-75 would have to be

transferred onto the machine. The edge from all the machines on

the left-hand side to the bottommost dummy vertex on the right-

hand side has weight zero, since removing a node does not require

any data transfer. The bold edges show a minimal perfect matching,

and is thus a solution to Equation 10.

NashDB computes a new fragmentation and replication scheme

and transitions to it based on a user-defined time interval. This in-

terval must be tuned by the user. If the interval is too short, NashDB

may initiate a large number of small but unnecessary data transfers.

If the interval is too long, workload drift may cause significant

performance degradation. We suggest setting the interval based on

how frequently the tuple value estimation buffer cycles through

data: for example, if the maximum number of scans held in the

buffer represents an hour of data, we suggest transitioning the

cluster every hour. We leave to future work the task automatically

detecting when the cluster should be transitioned.

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

8 ROUTING DATA ACCESS REQUESTS

NashDB includes a range scan router module that strives to iden-

tify the best replicas to read when processing an incoming query.

Previous approaches aimed to either minimize query span [24] (i.e.,

the total number of nodes used to fetch the input of a query) or data

access time [42] (by load balancing the access of popular tuples

across many nodes). Here, we present theMax of mins algorithm,

which balances these two goals:Max of mins seeks to take advan-

tage of highly-replicated, popular tuples to improve access latency,

while increasing the data access span only when it is beneficial to

the overall performance of the query.

When routing a range scan s of a query, the DBMS breaks down

the range scan operation into the set of fragments to be fetched,

F (s), and then selects a replica of each required fragment. Let us

denote as E(s) the nodes that store at least one fragment in F (s).
NashDB makes routing decisions based on the wait time on these

nodes (due to the bottleneck of disk access). Specifically, we assume

that fragment access requests are queued on nodes and the time

to read a fragment is proportional to the number of tuples in the

fragment. Hence, the wait time to read a fragment from a node

mi ,Wait(mi), is equal to the total number of tuples in the node’s

already-queued requests. Like previous work [9, 11, 26, 39], we

note that, for OLAP workloads, these queues can be tracked with

relatively little overhead, as scans tend to take a long time to process

and thus dominate communication costs.
3

To model the query span overhead, Max of mins adds an es-

timate of the penalty from increasing the span by one, ϕ, to the

estimated wait time of any node not currently included in the span.

A new nodemi is used for serving a scan only if doing so is benefi-

cial despite the penalty ϕ.
Max of mins schedules fragment requests on the node with

the shortest queue, in order based on the largest minimum possible

wait time for access to a fragment. The maximum of the minimum

wait times is selected because we assume queries can finish only

after all required fragments have been fetched. Therefore, since the

request whose minimum possible processing time is maximal is a

bottleneck, we schedule it first.

Let U (s,mj) be a function that indicates if the nodemj has al-

ready been selected to process the range scan s . Formally, Max of

mins schedules the fragment request that satisfies the following:

max

fi ∈F (s)

(
min

mj ∈E(s)
Wait(mj) +U (s,mj) × ϕ

)
(11)

The fragment request selected is scheduled on the node for which

the wait timewasminimal. Intuitively,Maxofmins only increases

the span when doing so is better than using any of the nodes

currently selected to process the fragment read.

9 RELATEDWORK

Previous work on fragmentation and replication have been diverse.

Mariposa [41] assumes a fixed number of nodes which bid on

queries and bargain in an open marketplace. Nodes split, sell, and

replicate fragments. Mariposa adapts to changes and converges to a

3
If scans were to be smaller, one could adapt “Power of 2” techniques [32, 35] to

schedule scans (e.g., consider only two random nodes from the eligible set, and choose

the node from that pair which satisfies our goal as captured by Equation 11).

good fragmentation strategy over time. Unlike NashDB, Mariposa

directly simulates a marketplace, creating overhead while slowly

driving the system towards equilibrium. NashDB computes this

equilibrium directly, avoiding the overhead of a market simulation.

DYFRAM [19] maintains access frequency histograms at each of

a fixed number of nodes. Each node can choose to split or combine

fragments based on a cost function, or replicate fragments from

their neighbors. DYFRAM’s primary goal is decentralization, making

it more resilient to failures at the cost of increased overhead.

SWORD [24] and Schism [12] represents tuples and queries as

vertices and edges of a hypergraph. Given a fixed number of nodes,

a hypergraph is cut into n disjoint partitions, trying to break as few

edges as possible. Each partition is assigned to a node. To fill excess

space, tuples are replicated based on a heuristic to further decrease

the number of broken edges. Both systems try to decrease network

costs for distributed query processing, and thus consider replication

only as a tool to decrease potential communication overhead, and

not as a way to increase performance in general.
4

E-Store [42] uses a thresholding approach in which tuples are

either “hot” (accessed frequently) or “cold” (accessed infrequently).

The hot and cold tuples are assigned to one of a fixed number of

nodes. “Hot” tuples are replicated aggressively. E-Store adjusts the

size of the cluster by adding or removing single nodes when the

CPU usage of the cluster moves outside a threshold, after which

fragmentation and replication strategies are recomputed. This ap-

proach is easy to implement, but responds only to CPU usage and

raw access frequency, as opposed to dollar-cost and query priority.

Clay [39] combines the threshold approach with the hypergraph

approach, actively migrating “hot” tuples, and tuples frequently

accessed along with them, away from overloaded nodes. Clay does

not handle data replication or cluster sizing.

Unlike NashDB, all of these solutions are agnostic to query prior-

itization. Modern DBMSes generally allow for some form of query

priority, but existing solutions are limited to allocating compute

resources (CPU, RAM, etc.) at query runtime [31].

Squall [16] is a system for performing pre-defined live migrations

on main-memory partitioned databases, concerned with safety and

efficiency for OLTP databases. In principle, Squall could be used to

execute the transition plans created by NashDB (Section 7).

10 EXPERIMENTS

In this section, we evaluate NashDB experimentally. We built a

prototypical NashDB on the AWS [2] cloud with m2.large EC2

instances. Our prototype executed SQL queries on PostgreSQL [6]

and we replaced the physical access operators of PostgreSQL to

route data requests through NashDB’s scan router.

Workloads In our experiments we used two different types of

workloads from several datasets (details in Appendix F):

(1) Static workloads: these workloads represent batch jobs in which

a large number of queries are sent simultaneously. Here, the

TPC-H workload consists of all query templates of the TPC-

H [7] benchmark with a size of 1TB. The Bernoulli workload
is a variation of the TPC-H workload that consists of simple

range queries over the 1TB TPC-H fact table. It simulates a

time-series analysis in which more recent tuples are accessed

4
As noted in [12, 24], this applies strongly to OLTP workloads.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

more frequently than older tuples: each range query ends at

the last tuple, and the starting points are drawn from a binomal

distribution, such that 95% of the queries access the last 1GB of

data, 90% of the queries access the second to last 1GB of data,

and 100 × 19

20

n
percent of the queries access the nth from the

last GB of data. Finally, we used a real-world workload (Real
data 1) that represents a batch workload of 1000 queries over an

800GB database that is periodically executed to update analytic

dashboards at a large corporation, which provided data on the

condition of anonymity. We provide more information about

this dataset in Appendix F.

(2) Dynamic workloads: these workloads represent online jobs,

spanning 72-hour periods. The Random workload is synthetic,

and represents a sequence of aggregated range queries with

uniformly distributed start and end points over a TPC-H fact

table. Real data 1 and Real data 2 represent real-world queries

issued by analysts and other applications on a production data-

base server at two large corporations that provided data on

the condition of anonymity. The databases are 300GB and 3TB

in size, and the workload includes 1,220 and 2,500 queries re-

spectively. We provide more information about this dataset in

Appendix F.

System Parameters Unless otherwise noted, we collect our value

estimation statistics over a the scan window size of 50 scan re-

quests. When applicable, the cluster transitioning algorithm was

ran every hour. We include the overhead of cluster transitioning

and scheduling in our cost and latency measurements.

10.1 Fragmentation

First, we evaluate NashDB’s ability to find low-variance fragments.

In Figure 6a and 6b, we compare the inner-fragment variance of

several algorithms, which we describe next.

Fragmentation algorithms The Optimal algorithm computes op-

timal fragmentations using a dynamic programming scheme as

described in Section 5.2. The NashDB algorithm uses the greedy

splitting/joining approach we introduced in Section 5.3. The DT
algorithm greedily searches for the best split point of the data,

then recursively splits the resulting two halves until the maxi-

mum number of partitions have been created. This is equivalent

to only running the “split” procedure of NashDB, and is similar

to the CART [10] decision tree induction algorithm. The Hyper-
graph algorithm uses a hypergraph partitioning approach to create

partitions that minimize query span, similar to SWORD [24]. This

approach treats each tuple and each query as the vertices and edges,

respectively, of a hypergraph. Standard hypergraph partitioning

techniques are applied to give a fixed number of partitions with few

edges spanning multiple partitions. Tuples are selected for replica-

tion to further decrease the number of broken edges (“Improved

LMBR” in [24]). While this approach aims to minimize query span,

and not to minimize the error (Equation 4) as NashDB does, we

compare against it to highlight the difference in the fragmentation

strategies selected by the two approaches. The Naive algorithm
partitions the database into fragments of equal size.

Static workloads Figure 6a shows the performance of various

partitioning algorithms on static workloads. To evaluate the perfor-

mance of each algorithm, we run the static workload first and then

measure the error (Equation 4) of each partitioning algorithm after

the whole workload has been seen. For both synthetic workloads,

the DT algorithm outperformed the Hypergraph and Naivemethods.

The Bernoulli dataset represents an adversarial input for the hyper-

graph approach, since the best k-cut of the graph will place the first

k − 1 tuples in their own partitions, and the remaining tuples will

be grouped together in one partition. On the real-world workload,

the Hypergraph approach outperformed both the Naive and DT ap-

proaches, implying that the good min-cut partitionings of the query

span hypergraph can correspond with low-variance fragmentation

strategies in real world data. In each case, the NashDB algorithm

is within 50% of the Optimal partitioning, and, in each case, the

NashDB algorithm matches or outperforms all the other heuristics.

Dynamic workloads Figure 6b shows the performance of the frag-

mentation algorithms on dynamic workloads. The fragmentation

scheme is recalculated after each query, and the sum of the total er-

ror over each fragmentation scheme is computed. The significantly

higher gap (when compared to the static case) between the Optimal
and the NashDB algorithm shows how the suboptimal nature of the

split/join heuristics can become significant over time. The differ-

ence between the partitions created by NashDB and DT (a factor of

approximately two) shows the importance of being able to split and
join fragments as workloads progress and change. By employing

both a splitting and joining heuristic, NashDB outperforms other
heuristics on dynamic data by approximately a factor of two.
Value estimation overhead We also measured the overhead of

the tuple value estimation tree (Section 4.2). With a window size of

|W | = 50 scan requests, the size of the value estimation tree and

buffer was always under 1 kilobyte, and the access time was always

under 5ms. Increasing the scan window size to 1000 scans (a value

significantly higher than necessary), the size was always under 4

kilobytes, again with access times less than 5ms.We conclude that
the tuple value estimation tree is able to maintain its online estimates
with sufficiently low overhead.

10.2 Query Prioritization

NashDB allows users to specify a price for each query sent, with

higher prices resulting in lower query latencies. Figure 6c shows

the average latency over time of TPC-H [7] workloads running on

NashDB. Here, all queries are given the same price, and we vary

this price. When the price of each query in the batch is set to 1/100

of a cent, the average latency has high variance and mean. As the

price per query increases, both the mean and variance decrease, as

this increase in query value causes NashDB to generate additional

replicas and to provision more nodes. A higher resource usage cost

is incurred, but the query execution times are improved.

NashDB also supports workloads with mixed query priorities.

Using the same TPC-Hworkload, we varied the price of all instances

of TPC-H template #7 (the template with latency closest to the

average latency for the whole workload) from 1/100 of a cent to

16/100 of a cent, while keeping the priority of all other queries fixed

at 1/100 of a cent. As a result, the average latency of instances of

template #7 fell significantly (by a factor of four), while the queries

with fixed priority saw only a modest (10%) improvement (Figure 9a

in Appendix G).
5
This modest improvement is due to the fact that

5
All other templates exhibit similar behavior. We plot only #7 due to space constraints.

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

 1000

 10000

 100000

TPC-H Bernoulli Real data 1

T
o
ta

l
F

ra
g
m

e
n
t
E

rr
o
r

Dataset

Optimal
NashDB

DT

Naive
Hypergraph

(a) Fragment variance for static workloads

 1000

 10000

 100000

 1x10
6

 1x10
7

Random Real data 1 Real data 2

S
u
m

 o
f
T

o
ta

l
F

ra
g
m

e
n
t
E

rr
o
r

Dataset

Optimal
NashDB

DT

Naive
Hypergraph

(b) Fragment variance for dynamicworkloads

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

s
)

Time

Query price = 1/100
Query price = 2/100
Query price = 4/100
Query price = 8/100
Query price = 16/100

(c) Effect of query priority on latency

Figure 6: Variance and query priority

the other queries can often still take advantage of the extra replicas

created for higher priority queries. NashDB’s responsiveness to query
priorities provides a single knob to adjust performance and cost, at
both the workload and query level.

10.3 Cost and Performance Evaluation

Here, we evaluate various cost and latency properties of NashDB

and compare it to other heuristics. First, we compare NashDB with

the Hypergraph approach we described in Section 10.1. This ap-

proach is tuned by adjusting the number of partitions created by

the hypergraph, which correspond to the number of nodes used.

Increasing the number of partitions increases the cluster size, which

increases cost while decreasing latency. We also compare against

a thresholding algorithm, labeled Threshold. Like in E-Store [42],

this algorithm first partitions the data into “hot” and “cold” sets of

tuples, and then distributes those tuples over a number of nodes.
6

Since the E-Store system was designed for OLTP databases with-

out replicated tuples, we additionally replicate each tuple in linear

proportion to the tuple’s access frequency. This approach is tuned

by adjusting the size of the cluster, i.e. the number of nodes. More

nodes incur a higher cost, but leads to better query performance.

ParetoAnalysis In this section, we compare the end-to-end perfor-

mance of NashDB against the Hypergraph and Threshold heuristics

on our static workloads. To compare these systems, we vary their

parameters through a wide range of reasonable values and plot the

resulting monetary cost and average query latency in Figure 7. For

NashDB, we varied the query priority between 0 and 128, by steps

of 0.005. For Hypergraph, we vary the number of partitions between

4 (the minimum, given our dataset size) and 400. For Threshold, we
vary the number of nodes between 4 (the minimum) and 400. Fig-

ures 7a, 7b, 7c show the latency and cost achieved by each of these

algorithms for static each workload (i.e. the production possibilities
for each algorithm). A point is Pareto optimal if there is no other

point that has both an equal or lower latency and an equal or lower

cost. The set of all Pareto optimal points is the Pareto front.
For both synthetic workloads, shown in Figure 7a and 7b, all the

points on the Pareto front are from NashDB. In other words, no

configurations of the Threshold or Hypergraph approaches were

found for which NashDB does not provide a equally good or better

performance for equally good or lower cost. For the real-world

6
We use the “Greedy extended” algorithm proposed in [42].

workload (Figure 7c), a single configuration of the hypergraph algo-

rithm is on the Pareto front. Setting this point aside, we conclude

that for these workloads, there exists an NashDB configuration that

strictly dominates any configuration of the other two systems.

Fixed Latency/Cost We compare NashDB, Hypergraph, and
Threshold in terms of monetary cost and data transfer overhead

after adjusting each algorithm to achieve identical average latency

on our dynamic datasets. During this experiment, the transitioning

techniques for all three system ran hourly. The monetary cost and

latency overheads of these transitions, as well as overhead included

from query routing, are included in the results.

Figure 8a shows that NashDB can achieve the same average query
latency at significantly lower cost than Threshold or Hypergraph.
For the Real data 2 dataset, the cost of NashDB is approximately 15%

lower that Hypergraph. Furthermore, when keeping the monetary

cost fixed, NashDB allows for lower data access latency as shown in

Figure 8b: with a fixed total cost of $20, NashDB provides an average

query latency that is 20% − 50% lower than other approaches. The

95% and 99% tail latencies (Figure 10 in Appendix G.1) also confirm

that a high percentage of queries benefit from NashDB, i.e., have

lower latency compared to the other techniques.

Transitioning OverheadNashDB incurs significantly higher data

transfer overhead when transitioning between two different con-

figurations (Figure 9b in Appendix G). Hypergraph has the lowest

data transfer cost as it is designed to optimize for that overhead.

Threshold comes second in terms of transition overhead. However,

both Threshold and Hypergraph still result in higher total cost and

latency than NashDB, as shown in Figure 8a and 8b (note that the

latency measurements include transition overhead). Hence, despite
the fact that NashDB transfers more data during transitions, it is still
Pareto optimal with respect to monetary cost and query latency.

We note that the average data transferred per hour by NashDB is

very small (< 200MB) and the average time to perform a transition

was under two seconds. To put this number in context, for the Real
data 2 dataset (the dataset with the largest transfer overheads), the

per-minute data throughput of NashDB varied between 255GB/m

and 265GB/m, representing a variance of less than 5%. Similar ob-

servations can be made from the other two datasets (Figure 11 in

Appendix G.2). Hence, the transitioning overhead has a minimum
impact on the throughput of the system.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

 10000

 100000

 1x10
6

 1x10
7

 0 500 1000 1500 2000 2500 3000 3500 4000

C
o
s
t
(1

/1
0
0
 c

e
n
t)

Average Latency (s)

NashDB
Hypergraph

Threshold

(a) TPC-H workload

 10000

 100000

 1x10
6

 1x10
7

 0 500 1000 1500 2000 2500 3000 3500 4000

C
o
s
t
(1

/1
0
0
 c

e
n
t)

Average Latency (s)

NashDB
Hypergraph

Threshold

(b) Bernoulli workload

 10000

 100000

 1x10
6

 1x10
7

 0 500 1000 1500 2000 2500 3000 3500 4000

C
o
s
t
(1

/1
0
0
 c

e
n
t)

Average Latency (s)

NashDB
Hypergraph

Threshold

(c) Real workload

Figure 7: Cost and latency tradeoffs for static workloads.

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

 4x10
6

 4.5x10
6

Random Real data 1 Real data 2

C
o
s
t
(1

/1
0
0
 c

e
n
t)

Dataset

NashDB
Hypergraph

Threshold

(a) Monetary costs with fixed latency

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

Random Real data 1 Real data 2

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

Dataset

NashDB
Hypergraph

Threshold

(b) Average latency with fixed cost

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Random Real data 1 Real data 2

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

Dataset

Max of mins
Shortest queue

Greedy SC

(c) Latency, various schedulers

Figure 8: Experiments on dynamic workloads

10.4 Routing Evaluation

Next we evaluateMaxofmins, the algorithm for routing fragment

read requests to replicas, by comparing to two other approaches: (a)

Greedy SC, whichminimizes query span of each query by repeatedly

selecting the node with highest number of remaining tuples [24],

and (b) Shortest queue, which minimizes fragment request latency

by scheduling each fragment request on the node with the shortest

queue. We compare these algorithms for dynamic query workloads.

For Max of mins we set ϕ, the cost of increasing the query

span by one, to ϕ = 350ms after performing a simple experiment on

AWS [2]. Each node reports its queue length whenever a fragment

read completes. This overhead is included in all of our experiments.

Figure 8c shows that, at approximately the same cost,Max of

mins delivers substantially shorter latency than either Shortest
queue or Greedy SC. This advantage in latency comes from taking

into account both the queue size and the query span. The signifi-

cantly higher latency incurred by the Greedy SC is due to nodes

with particularly popular sets of fragments becoming performance

bottlenecks – other nodes sit idly while the few nodes with popular

fragment sets process their queues.

We measured the average span (number of nodes used per query)

of the produced schedules (Figure 9c in Appendix G). As expected,

Greedy SC has the lowest average query span (1.1 on “Real Data

2”). Shortest queue has the highest query span (3.3), because the

algorithm does not take query span into account at all. Max of

mins, which increases query span only when there is a latency

benefit, has an average query span of 1.5, which is significantly

lower than Shortest queue, but slightly higher than Greedy SC.Max

ofmins strikes a balance between span and wait time, which provides
both low-latency and low-cost schedules.

11 CONCLUSIONS

This work introduced NashDB, a data distribution framework for

OLAP workloads that relies on economic theory to automatically

fragment, replicate, and allocate replica on an elastic cluster. NashDB

takes an input query priorities (expressed as prices) and data access

requests, and strives to optimally balance replica supply to work-

load demands. Specifically, it tightly couples an economic model to

(a) an automatic fragmentation algorithm that adapts to changes

in “importance” (value) of tuples and (b) replication and replica

allocation mechanisms that are guaranteed to produce a data distri-

bution scheme that is in Nash equilibrium. We have shown that a

prototypical implementation of NashDB displays Pareto dominate
performance (in terms of cluster usage cost and query execution

latency) on a number of synthetic and real-world workloads.

Moving forward, we plan to investigate applications of NashDB’s

model to OLTP workloads, as well as integrating more advanced

query scheduling algorithms into the system. We are also consider-

ing how economic models could provide performance guarantees.

ACKNOWLEDGMENTS

This research was funded by NSF IIS 1253196.

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

REFERENCES

[1] Amazon EBS, https://aws.amazon.com/ebs/.

[2] Amazon Web Services, http://aws.amazon.com/.

[3] Google Cloud Platform, https://cloud.google.com/.

[4] JGraphT, http://jgrapht.org/.

[5] Microsoft Azure Services, http://www.microsoft.com/azure/.

[6] PostgreSQL database, http://www.postgresql.org/.

[7] The TPC-H benchmark, http://www.tpc.org/tpch/.

[8] Adelson-Velsky, G., et al. An algorithm for the organization of information.

Soviet Mathematics ’62.
[9] Azar, Y., et al. Cloud scheduling with setup cost. In SPAA ’13.
[10] Breiman, L., et al. Classification and Regression Trees.
[11] Chi, Y., et al. iCBS: Incremental Cost-based Scheduling Under Piecewise Linear

SLAs. PVLDB ’11.
[12] Curino, C., et al. Schism: A workload-driven approach to database replication

and partitioning. VLDB ’14.
[13] Das, S., et al. ElasTraS: An Elastic, Scalable, and Self-managing Transactional

Database for the Cloud. TODS ’13.
[14] Dean, J., et al. The Tail at Scale. Comm. ACM ’13.
[15] Edelsbrunner, H. A New Approach to Rectangle Intersections. Journal of

Computer Math ’83.
[16] Elmore, A. J., et al. Squall: Fine-Grained Live Reconfiguration for Partitioned

Main Memory Databases. In SIGMOD ’15.
[17] Epstein, L., et al. Class constrained bin packing revisited. Theoretical Computer

Science ’10.
[18] Hall, M., et al. The WEKA Data Mining Software: An Update. SIGKDD ’09.
[19] Hauglid, J. O., et al. DYFRAM: Dynamic fragmentation and replica management

in distributed database systems. Distrib Parallel DB ’10.
[20] Jagadish, H., et al. Optimal Histograms with Quality Guarantees. VLDB ’98.
[21] Jalaparti, V., et al. Bridging the Tenant-provider Gap in Cloud Services. In

SoCC ’12.
[22] Konno, H., et al. Best piecewise constant approximation of a function of single

variable.

[23] Kuhn, H. W. The Hungarian method for the assignment problem. NRLQ ’55.
[24] Kumar, K. A., et al. SWORD: Workload-aware Data Placement and Replica

Selection for Cloud Data Management Systems. VLDB Journal ’14.
[25] Lamb, A., et al. The Vertica Analytic Database: C-store 7 Years Later. VLDB ’12.
[26] Leitner, P., et al. Cost-Efficient and Application SLA-Aware Client Side Request

Scheduling in an Infrastructure-as-a-Service Cloud. In CLOUD ’12.
[27] Li, J., et al. Tales of the Tail: Hardware, OS, and Application-level Sources of

Tail Latency. In SOCC ’14.
[28] Lolos, K., et al. Elastic management of cloud applications using adaptive

reinforcement learning. In Big Data ’17.
[29] Mahlknecht, G., et al. A scalable dynamic programming scheme for the

computation of optimal k -segments for ordered data. Information Systems ’17 .
[30] Marcus, R., et al. WiSeDB: A Learning-based Workload Management Advisor

for Cloud Databases. VLDB ’16.
[31] McWherter, D., et al. Priority mechanisms for OLTP and transactional Web

applications. In ICDE ’04.
[32] Mitzenmacher, M. The Power of Two Choices in Randomized Load Balancing.

IEEE Parallel Distrib. Sys. ’01.
[33] Nash, J. F. Equilibrium points in n-person games. PNAS ’50.
[34] Ortiz, J., et al. PerfEnforce Demonstration: Data Analytics with Performance

Guarantees. In SIGMOD ’16.
[35] Ousterhout, K., et al. Sparrow: Distributed, Low Latency Scheduling. In SOSP

’13.
[36] Pedregosa, F., et al. Scikit-learn: Machine Learning in Python. JMLR ’11.
[37] Rogers, J., et al. A generic auto-provisioning framework for cloud databases.

In ICDEW ’10.
[38] Serafini, M., et al. Accordion: Elastic Scalability for Database Systems Support-

ing Distributed Transactions. VLDB ’14.
[39] Serafini, M., et al. Clay: Fine-grained Adaptive Partitioning for General Data-

base Schemas. VLDB ’16.
[40] Shachnai, H., et al. Polynomial time approximation schemes for class-

constrained packing problems. J. of Scheduling ’01.
[41] Sidell, J., et al. Data replication in Mariposa. In ICDE ’96.
[42] Taft, R., et al. E-Store: Fine-grained Elastic Partitioning for Distributed Trans-

action Processing Systems. VLDB ’15.
[43] Tomizawa, N. On some techniques useful for solution of transportation network

problems. Networks ’71.
[44] Welford, B. Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics ’62.
[45] Xavier, E. C., et al. The class constrained bin packing problem with applications

to video-on-demand. Theoretical Computer Science ’08.
[46] Xiong, P., et al. Intelligent management of virtualized resources for database

systems in cloud environment. In ICDE ’11.

A VALUE ESTIMATION TREE OPTIMIZATION

It is not necessary to store both the S(ni) and E(ni) values for each
node. Since α is always updated by adding the quantity S(ni) −
E(ni), we can store this value, ∆(ni), instead. When inserting or

removing a scan si , two nodes are retrieved or created, n1 and n2,
corresponding to Start(qi) and End(qi). When inserting, ∆(n1) is
updated by adding Price(qi) and ∆(n2) is updated by subtracting

Price(qi) from ∆(n2). The addition and subtraction are swapped

for removing a scan.

B ERROR FUNCTION

Here, we show how Equation 4 can be computed using only the

sum of squares and square sum, as given in Equation 6. Since our

error function is the unnormalized variance, it can be computed by

taking the variance of a fragment,Var (fi), and multiplyingVar (fi)
by the size of the fragment. Thus, letting a = Start(fi), b = End(fi),

and E[f (x)]
β
α be the expected value of f (x) over the interval (α , β):

Err (fi) =
b∑

x=a

(
V (x) −

∑b
i=a V (i)

b − a

)
2

= (b − a) ×Var (fi)

= (b − a) ∗

(
E[V (x)2]ba −

(
E[V (x)]ba

)
2

)
=

b∑
x=a

V (x)2 −

(b∑
x=a

V (x)

)2
C FINDING OPTIMAL SPLIT POINTS

Algorithm 2 Finding the best split point

1: function FindSplit(fi)
2: α ← V (Start(fi))
3: α2 ← V (Start(fi))

2

4: β ←
∑End (fi)
x=Star t (fi)+1

V (x)

5: β2 ←
∑End (fi)
x=Star t (fi)+1

V (x)2

6: BestPoint ← 0

7: BestPointVal ←∞
8: for PotSplit ← Start(fi) + 1 to End(fi) do
9: CurrScore ← (α2 − α

2) + (β2 + β
2)

10: if CurrScore < BestPointVal then
11: BestPointVal ← CurrScore
12: BestPoint ← PotSplit
13: end if

14: α ← α +V (PotSplit)
15: α2 ← α2 +V (PotSplit)

2

16: β ← β −V (PotSplit)
17: β2 ← β2 −V (PotSplit)

2

18: end for

19: return BestPoint
20: end function

Algorithm 2, a modified version of Welford’s algorithm [44]

inspired by CART [10], computes optimal binary split point in a

fragment in linear time and constant space. The variables α and

α2 are used to track of the sum and squared sum of V (x) for the

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Marcus et al.

Name Use DB Size # Queries Med. read Min. read Med. # results

Static “Real data 1” Dashboard 800GB 1000 600GB 5G 10k

Dynamic “Real data 1” Descriptive analytics 300GB 1220 50GB < 1GB 20k

Dynamic “Real data 2” Predictive analytics 3TB 2500 450GB 80KB < 2k

Table 1: Statistics about datasets

values to the left of the current point, and the variables β and β2
are used to track the respective values to the right of the current

point. Lines 2-5 initialize these variables, and lines 14-17 update

them at each iteration. Line 9 uses α ,α2, β , and β2 to compute the

sum of the error of the fragments that would result from splitting

fi at the potential splitting point PotSplit . At the end of the loop,

the best splitting value is known and returned. Similar algorithms

have been used in various implementations [18, 36] of regression

trees [10].

While Algorithm 2 iterates over every tuple for simplicity, the

optimal split point can only be at a point where the value (V (x))
changes [10, 29]. Thus, it can be optimized to only iterate over the

“chunks” of tuples and tuple values generated by Algorithm 1 by

checking only the beginning and end of each chunk, and adding

the appropriate summed values between each step (the summed

values can easily be computed by multiplying V (x) by the size of

the chunk).

D NASH EQUILIBRIUM DEFINITION

Definition 6.1 can be formalized as follows. A set of nodes M is

in Nash equilibrium if all the following conditions hold. For each

mi ∈ M , let Gi be the set of fragments assigned to the machinemi .

Conditions 1-3 are formalized as:

∀mi ∈ M,¬∃f ,д ∈ G s.t.

Pro f it(mi ,Gi) < Pro f it(mi ,Gi − { f }) ∨

Pro f it(mi ,Gi) < Pro f it(mi ,Gi ∪ { f }) ∨

Pro f it(mi ,Gi) < Pro f it(mi ,Gi ∪ { f } − {д})

Condition 4 is formalized as:

¬ (∃mi < M,∃b ⊂ G s.t. (Pro f it(mi ,b) > 0))

E PROOF OF THEOREM 6.1

An extended proof of Theorem 6.1 is given below.

Proof. Equation 9 replicates each fragment such that each replica

profit is greater than or equal to zero, but creating one additional

replica of any fragment will cause the profit to go below zero. By

replicating each fragment according to Equation 9, each of these

conditions is satisfied.

• Condition 1: no node can remove a fragment and gain a

profit. By Equation 9, each replica created will be profitable.

Therefore, removing a fragment will decrease profit.

• Condition 2: no node can add a fragment and gain a profit.

By Equation 9, each fragment is replicated so that a single

additional replica would cause the profit for all replicas to

become negative.

• Condition 3: no node can swap one fragment for another

and gain a profit. Deleting a replica of fi and then adding

another replica of fragment fj will not be profitable, since
condition 2 shows that adding a replica of fj will decrease
profit, and removing a replica of fi will (1) decrease profit as
in condition 1, and (2) will not change the value of a replica

of fj .
• Condition 4: no new node can enter the market and make

a profit. Any new node would have to add a replica of a

fragment, which, by condition 2, would not be profitable.

□

F DATASET DESCRIPTIONS

The static “Real data 1” and dynamic “Real data 1” and “Real data 2”

come from three different corporations that executed their queries

against a Vertica [25] database, but all of our experimental results

were produced using Postgres and the NashDB prototype. A few

queries using Vertica-specific features were rewritten into equiva-

lent Postgres-compatible SQL queries.

Since the static “Real data 1” and dynamic “Real data 1” and “Real

data 2” datasets contain sensitive information, we can only provide

summary statistics about them. Table 1 shows the database size,

number of queries, median data read by a query, minimum data

read by a query, and the median number of results returned by

queries.

G ADDITIONAL EXPERIMENTS

G.1 Tail latency

While Section 10 investigated NashDB’s performance in terms of av-

erage latency, here we additionally analyze NashDB’s performance

based on tail latency [14, 27], e.g. the 95th and 99th percentile of

latency. Figure 10 shows the tail latency performance for NashDB,

Hypergraph, and Threshold when each algorithm was adjusted to

achieve an identical monetary cost (matching the parameters for

the experiment described in Section 10.3). In addition to having

superior average latency (Figure 8b), NashDB exhibits superior tail
latency on all three datasets.

G.2 Throughput over time

In addition to the discussion of NashDB’s overhead costs pre-

sented in Section 10.3, we additionally provide throughput-over-

time graphs for the three real-world workloads in Figure 11. For

the dynamic “real data 1” workload, throughput varied between 14

and 18GB/m. For the dynamic “real data 2” workload, throughput

varied between 255 and 256GB/m. For the dynamic “random” work-

load, throughput varied between 112 and 118 GB/m, and exhibited

relatively lower variation because each query is random (and thus

there is no pattern over time, so the distribution stays constant

NashDB: An End-to-End Economic Method for Elastic Databases SIGMOD’18, June 10–15, 2018, Houston, TX, USA

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

L
a
te

n
c
y
 (

s
)

Priority (1/100 cent)

Prioritized query latency
Other query latency

(a) TPC-H workload varying priority

 0

 50000

 100000

 150000

 200000

Random Real data 1 Real data 2

T
ra

n
s
fe

r
(k

b
)

Dataset

NashDB
Hypergraph

Threshold

(b) Average data transfer cost for fixed latency

 1

 1.5

 2

 2.5

 3

 3.5

Random Real data 1 Real data 2

A
v
e
ra

g
e
 Q

u
e
ry

 S
p
a
n

Dataset

Max of mins
Shortest queue

Greedy SC

(c) Span, various schedulers

Figure 9

 100

 150

 200

 250

 300

 350

 400

 450

 500

Random Real data 1 Real data 2

9
5
%

9
9
%

9
5
%
9
9
%

9
5
%

9
9
%

9
5
%

9
9
%

9
5
%

9
9
%

9
5
%

9
9
%

9
5
% 9
9
%

9
5
%

9
9
%

9
5
%

9
9
%

L
a
te

n
c
y
 (

s
)

Dataset

NashDB
Hypergraph

Threshold

Figure 10: Percentile (tail) latency comparison

and the cluster transitioning algorithm moves less data). For the

static “real data 1” workload, the throughput varies between 2148

to 2190GB/m. The lower relative variation of the static “real data 1”

workload is due to the fact that the cluster transitioning technique

was never applied (the workload represents a batch workload and

so our approach identified a distribution schema and never had to

transition to a new one). For all workload the transition overhead

(which ranges between 5-200MB based on Figure 11) is significantly

lower that the throughput (which ranges between 10s-1000s GB/m).

H ECONOMIC TERMINOLOGY

Throughout this paper, we use the colloquially understood phrases

“increases in supply” or “decreases in demand.” To readers deeply

familiar with economic literature, we note that this increase in

supply or demand is in reference to a change in quantity supplied or

demanded, not a shift in the supply or demand curves themselves.

 104

 108

 112

 116

 120

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h
ro

u
g
h
p
u
t
(G

B
)

Time (m)

NashDB (Dynamic random)

(a) Dynamic “random” dataset

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h
ro

u
g
h
p
u
t
(G

B
)

Time (m)

NashDB (Dynamic real data 1)

(b) Dynamic “real data 1” dataset

 248

 252

 256

 260

 264

 268

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h
ro

u
g
h
p
u
t
(G

B
)

Time (m)

NashDB (Dynamic real data 2)

(c) Dynamic “real data 2” dataset

 2100

 2150

 2200

 2250

 2300

 0 20 40 60 80 100 120 140 160 180

T
h
ro

u
g
h
p
u
t
(G

B
)

Time (m)

NashDB (Static real data 1)

(d) Static “real data 1” dataset

Figure 11: Throughput over time for various datasets

	Abstract
	1 Introduction
	2 System model
	3 Economic modeling
	4 Tuple value estimation
	4.1 Tuple & Fragment Value Definitions
	4.2 Value Estimation Tree

	5 Fragmentation
	5.1 Fragment Uniformity
	5.2 Computing Optimal Fragments
	5.3 Greedy Fragmentation

	6 Replication
	7 Cluster Transitioning
	8 Routing Data Access Requests
	9 Related work
	10 Experiments
	10.1 Fragmentation
	10.2 Query Prioritization
	10.3 Cost and Performance Evaluation
	10.4 Routing Evaluation

	11 Conclusions
	References
	A Value estimation tree optimization
	B Error function
	C Finding optimal split points
	D Nash equilibrium definition
	E Proof of Theorem 6.1
	F Dataset descriptions
	G Additional experiments
	G.1 Tail latency
	G.2 Throughput over time

	H Economic terminology

