

Machine Learning for Query Optimization:
A Few Interesting Results

& Thousands of Practical Barriers

Ryan Marcus (MIT)
ryanmarcus@csail.mit.edu

Twitter: @RyanMarcus

These slides: https://ryan.cab/bu20

mailto:ryanmarcus@csail.mit.edu
https://ryan.cab/bu20

Machine Learning for Query Optimization:
A Few Interesting Results

& Thousands of Practical Barriers

Ryan Marcus (MIT)
ryanmarcus@csail.mit.edu

Twitter: @RyanMarcus

These slides: https://ryan.cab/bu20

Undergrad Ph.D. Postdoc Job!
Parents finally

happy?

4 yrs 5 yrs 2 yrs many yrs

mailto:ryanmarcus@csail.mit.edu
https://ryan.cab/bu20

Query Optimizers
● Transform SQL into a query plan
● HUGE effort!

– 42K LOC in PG
– 1M+ SQL Server
– 45-55 FTEs, Oracle (~ $5mil/year)

● Requires per DB tuning
– PG: 15% bump
– Oracle: 22% bump
– SQL Server: 18% bump

SELECT *
FROM t1, t2 WHERE…

Query Optimizer

Classic Query Optimizers
● Cardinality estimation models

– Histograms
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model

Classic Query Optimizers
● Cardinality estimation models

– Histograms
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model

Cardinality Estimation
SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Cardinality Estimation

B A C

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Cardinality Estimation

B A C

A

⨝

B

⨝

C

A

⨝

C

⨝

B

SELECT * FROM A, B, C WHERE
A.c1 = B.c1 AND A.c2 = C.c2;

Estimator True Est 1 Est 2

A B⨝ 8 4 12

A C⨝ 15 9 11

L
2 0 42 + 62 42 + 42

Higher error,
better plan!

Learning QO?
● Cardinality estimation

– Can we use ML to
predict the
cardinalities?

– Yes, but limited impact
on QO.

Cardinality Estimation

MSCN Local PDF
0

0.2

0.4

0.6

0.8

1

1.2

Rel L2
Rel Latency

CIDR ‘19 aiDM ‘19 Naru, SIGMOD ‘20

Learning QO?
● Cardinality estimation

– Can we use ML to
predict the
cardinalities?

– Yes, but limited impact
on QO.

● End-to-end QO
– Possible, but harder.
– Requires some

background.

DB + ML
“but there’s no worst-case bound!”

- the DB community

“can’t hear you over
 all my grant money”
- the ML community

The Deep Learning Mythos

Fear, Uncertainty, Doubt.
It’s a black box. Magic

Crazy results from Arch-Mage Goodfellow

Deep Learning for QO
● Recent groundswell of research
● RL based approaches:

– Feb/Mar ‘18:
● Marcus et al. (ReJOIN)
● Ortiz et al.

– Aug ‘18:
● Krishnan et al. (DQ)

– Aug ‘19:
● Neo, VLDB

● Cardinality based approaches:

– 2015: Liu et al.

– 2019: Kipf et al. (MSCN)

– Aug ‘19:
● Group by (Kipf et al.)

● Local models (Woltmann et al.)

● Shared clouds (Wu et al.)

Deep Learning for QO
● Many of these works represent a “just add deep learning and stir” approach.
● Characterized by:

– Fully-connected neural networks
– Train / test set leakage
– Off-the-shelf RL or regression loss functions
– Little to no integration with a broader DB
– No evaluation of actual query performance

● Examples: ReJOIN*, MSCN, Learned State Representations, operator
embeddings*, DQ, CardNet, and probably many more...

* my work, and I’ll be the first to admit that I drank the Kool-Aid.

Deep Learning for QO
● Many of these works represent a “just add deep learning and stir” approach.
● Characterized by:

– Fully-connected neural networks
– Train / test set leakage
– Off-the-shelf RL or regression loss functions
– Little to no integration with a broader DB
– No evaluation of actual query performance

● Examples: ReJOIN*, MSCN, Learned State Representations, operator
embeddings*, DQ, CardNet, and probably many more...

* my work, and I’ll be the first to admit that I drank the Kool-Aid.

The 5
deadly sins
of ML for DB

Deep Learning for QO
● Many of these works represent a “just add deep learning and stir” approach.
● Characterized by:

– Fully-connected neural networks
– Train / test set leakage
– Off-the-shelf RL or regression loss functions
– Little to no integration with a broader DB
– No evaluation of actual query performance

● Examples: ReJOIN*, MSCN, Learned State Representations, operator
embeddings*, DQ, CardNet, and probably many more...

* my work, and I’ll be the first to admit that I drank the Kool-Aid.

The 5
deadly sins
of ML for DB

What makes DL good?
● Biggest DL success stories:

– Computer vision (CV)
– Natural language processing (NLP)

What makes DL good?

Convolution
Neural Networks

(CNNs)

Long short-term
Memory Networks

(LSTM)

F
C

 Lay er

F
C

 Lay er

F
C

 Lay er

F
C

 Lay er

What makes DL good?
● To build a NN to recognize objects in images, we modeled the low-level

structure used by the human eye.
– LeCun et al., and indirectly, a Turing award

● To build a NN to recognize words in speech, we modeled the low-level
structure used by the human prefrontal cortex.
– Graves et al.

● To build a NN to {perform a task}, we modeled the low-level structure
used by {expert system known to perform well}.

What makes DL good?
● To build a NN to recognize objects in images, we modeled the low-level

structure used by the human eye.
– LeCun et al., and indirectly, a Turing award

● To build a NN to recognize words in speech, we modeled the low-level
structure used by the human prefrontal cortex.
– Graves et al.

● To build a NN to {perform a task}, we modeled the low-level structure
used by {expert system known to perform well}.

INDUCTIVE BIAS

What makes DL good?
● As systems researchers, we

hate complex, problem-specific
solutions
– We love throwing out complexity

and generalizing.

● Our first response when we see
all these different architectures?
– Can’t we be more general?

CNNs LSTMs

What makes DL good?
● “But wait! Hornik et al. showed that fully-

connected layers can represent any arbitrary
function!” - Someone not good at deep learning.

temperature

Ic
e

cr
ea

m
 s

al
es

Original Data

What makes DL good?
● “But wait! Hornik et al. showed that fully-

connected layers can represent any arbitrary
function!” - Someone not good at deep learning.

temperature

Ic
e

cr
ea

m
 s

al
es

temperature

Ic
e

cr
ea

m
 s

al
es

temperature

Ic
e

cr
ea

m
 s

al
es

Arbitrary Function A Arbitrary Function BOriginal Data

What makes DL good?
● You don’t want an arbitrary function that fits.
● You want a generalizable function that fits.

temperature

Ic
e

cr
ea

m
 s

al
es

temperature

Ic
e

cr
ea

m
 s

al
es

temperature

Ic
e

cr
ea

m
 s

al
es

Arbitrary Function A Arbitrary Function BOriginal Data

What makes DL good?
● Old school ML: regularization. Deep learning: just SGD!
● How do we know if our function will generalize?
● Inductive bias

– One way: model it after a (biological) expert system that
generalizes.

– Generally: constrain the type of function that can be learned
based on prior knowledge of the problem at hand.

Inductive Bias
● Rank MNIST performance of these algorithms.

Fully-connected NN Convolution NN Random Forest

Fixed parameter budget ~5k, ReLU, large hyperparameter grid search

Inductive Bias
● Rank MNIST performance of these algorithms.

Fully-connected NN Convolution NN Random Forest

Fixed parameter budget ~5k, ReLU, large hyperparameter grid search

3rd 1st 2nd
86% 98%

92%

Inductive Bias
● Conv nets have a strong inductive bias borrowed from biological visual

systems.
● Random forests have a bias towards conditional sparsity – given one

pixel, it’s neighbor likely isn’t that telling.
● Fully connected NNs assign every feature a weight no matter what –

biased towards sensitive/simple functions
– … sort of. For details see Valle-Perez et al., https://arxiv.org/abs/1805.08522

● Deep learning is fantastic if and only if the inductive bias of the
model matches reality.

https://arxiv.org/abs/1805.08522

Inductive Bias
● Deep learning hype

– End-to-end
– Automatic feature

engineering
– Great generalization

● Deep learning reality:
– All these things.
– BUT you have to get

the model architecture
right!

Inductive Bias
● What about database

systems?
– Convolutional neural networks

are to computer vision as
________ is to database
systems?

● Obviously, I don’t have the
answer.

● But here’s an idea: tree
convolution!

Neo: A Learned Query Optimizer
● Joint work

– Parimarjan Negi, Hongzi Mao, Chi Zhang,
Mohammad Alizadeh, Tim Kraska, Olga
Papaemmanouil, Nesime Tatbul.

● An early prototype of what a deep learning
powered optimizer might look like

Neo
● No cost models, cardinality estimation or exponential search.

– Previous: can replace each with a learned system in isolation
● Unclear benefit on query latency

– Neo is first to show we can have all learned everything.
● Optimizing query latency directly, end-to-end

● Automatic per-DB tuning
– Adaption to the user’s workflow and data

● Headline result: matches or exceeds the performance of SOTA query
optimizers within 24hrs of training.

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

Execution Engine

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

1. We observe how a basic
query optimizer handles a
sample workload.

Execution Engine

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

1. We observe how a basic
query optimizer handles a
sample workload.

2. We train a combination of a
value model and a plan search
module to emulate the expert.

Execution Engine

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h
Execution Engine

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

1. We observe how a basic
query optimizer handles a
sample workload.

2. We train a combination of a
value model and a plan search
module to emulate the expert.

3. We create a feedback loop
where we refine the value
model using real query latency
on user-submitted queries.

Neo
● First, how to represent QO as an RL problem? (MDP)
● Neo is designed around three principles:

– Find the right inductive bias
● Fully-connected neural networks? Never heard of ‘em.

– Learning from demonstration
● Watch masters. Emulate masters. Surpass masters.

– Learn embeddings
● No histograms, no exception lists. Learned models.

See paper for details. ☺

Just an overview
today.

Query Optimization as an MDP
● DB assumptions

– Binary query plan trees
– Non-distributed
– Fixed # join operators
– Equi-joins only

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_IN

ACTOR
Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

R5

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_IN

ACTOR
Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

R5

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R3

R4

R5

Hash ⋈

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R2

R3

R4

Hash ⋈

R1

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R2

R3

R4

Hash ⋈

R1

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R3

Hash ⋈

R1
Sort ⋈

R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

R3

Hash ⋈

R1
Sort ⋈

R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

R3

Hash ⋈

R1
Sort ⋈

R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

Hash ⋈

R1
Sort ⋈

Sort ⋈

R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

Hash ⋈

R1
Sort ⋈

Sort ⋈

R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

Hash ⋈

R1
Sort ⋈

Sort ⋈

R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

Hash ⋈

Sort ⋈

Sort ⋈

⋈Hash

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Every previous state
had reward 0

Now, we execute the
program and record
the latency.

Reward is -latency.

Hash ⋈

Sort ⋈

Sort ⋈

⋈Hash

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 3

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Of course, there’s no Q(·).

… so we will learn an
approximation, Q̂

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning
● Value iteration

π
0

Initial Policy
(random)

Q
t+1

Q Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1

Inductive Bias
● How should we approximate the Q function?
● Option 1

– Flatten the state into a vector
– Use a fully connected neural network

● Not really how deep learning becomes successful
● Option 2

– Try to find the right inductive bias
– Build an intuitive network architecture

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

“Many stacked sort
operators – possibly
avoids a resort.”

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS_IN” is
presorted on disk –
should use a sort
instead of a hash.

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS_IN” is
presorted on disk –
should use a sort
instead of a hash.

Experts examine local structure first,
then look to higher level features.

Tree Convolution

hash?

sort? 0

Hash

Sort C

A B

Tree Convolution

hash?

sort? 0

2Hash

Sort C

A B

Tree Convolution

hash?

sort? 0

2

0

Hash

Sort C

A B

Tree Convolution

hash?

sort? 0

2

0

0

Hash

Sort C

A B

Tree Convolution

hash?

sort? 0

2

0

0 0

Hash

Sort C

A B

Tree Convolution

hash?

sort? 0

2

0 0

0 0

Hash

Sort C

A B

Tree Convolution

sort?

0 B?

0

2 0

0 0

Hash

Sort C

A B

Tree Convolution
● Like image convolution, filter weights are:

– Automatically learned
– Stacked (to learn higher-level features)

● Efficiently vectorized on a GPU

Neo

Value network architecture (used to approximate Q)

Plan Tree

Tree Convolution

F
ully C

o nnecte d Laye rs

D
ynam

i c P
ooli ng

C
ost P

r ediction

Random Policies
● DRL is very sample

inefficient
– You have to play for a long

time before you get good.

● In QO, doing worse
takes longer!
– Cannot afford a random

initial policy.

* not the exact histogram… credit to Leis et al.

π
0

Initial Policy
(random)

Q
t+1

Q Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1

Random Policies
● DRL is very sample

inefficient
– You have to play for a long

time before you get good.

● In QO, doing worse
takes longer!
– Cannot afford a random

initial policy.

1 secon d

1 m
inut e

10 hour s

4 days

1 m
onth

1 year

Query Latency

Q

ue
ry

 P
la

ns

* not the exact histogram… credit to Leis et al.

Random Policies
● Heuristic query optimizers have

been around for a long time.
– Some are very simple, like

Selinger et al., ‘89
– This is the green line.

● So instead of starting from
random…
– Use a simple heuristic system to

bootstrap our policy.

1 secon d

1 m
inut e

10 hour s

4 days

1 m
onth

1 year

Query Latency

Q

ue
ry

 P
la

ns

* not the exact histogram… credit to Leis et al.

Experiments

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Postgres
Neo (R-Vectors)

1 = performance of
PG optimizer

Neo trained with PG
optimizer as expert
on small sample
beforehand.

Experiments

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Postgres
Neo (R-Vectors)

1 = performance of
PG optimizer

Neo trained with PG
optimizer as expert
on small sample
beforehand.

On test queries,
Neo outperforms
PG 15-25%.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

Experiments
Black (1): performance of
Oracle query optimizer

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

Experiments
Black (1): performance of
Oracle query optimizer

Green (1.7): performance of
PostgreSQL plans executed
on Oracle

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

Experiments
Black (1): performance of
Oracle query optimizer

Green (1.7): performance of
PostgreSQL plans executed
on Oracle

Red: Performance of Neo
over time

Experiments

Conclusions
● Neo: first learned end-to-end optimizer
● Achieves performance on-par with SOTA commercial

query optimizers
● Limitations & future work

– Depends on an expert
– Fixed schema
– Concurrent queries

Coming Soonish
● Bao: Bandit Optimizer
● Current optimizers might not

be good at picking the best
plan, but they’re great at
avoiding terrible plans.

● Can we multiplex simple
optimizers together using
learning? 0 20 40 60

Time (hours)
0k

20k

40k

60k

80k

100k

Qu
er

ie
s f

in
ish

ed

Bao
PostgreSQL
Neo

That’s All
● These slides: https://ryan.cab/bu20

● Website: https://ryan.cab
● Me, on Twitter: @RyanMarcus
● Will find good inductive biases for food!

– Current postdoc at CSAIL, looking for a position next year!

● Email: ryanmarcus@csail.mit.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

